mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-02-12 18:33:22 +00:00
Remove DSA.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@32553 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
bc80038791
commit
f92b25ed4a
@ -1,54 +0,0 @@
|
||||
//=- llvm/Analysis/CallTargets.h - Resolve Indirect Call Targets --*- C++ -*-=//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This pass uses DSA to map targets of all calls, and reports on if it
|
||||
// thinks it knows all targets of a given call.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_ANALYSIS_CALLTARGETS_H
|
||||
#define LLVM_ANALYSIS_CALLTARGETS_H
|
||||
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/Support/CallSite.h"
|
||||
|
||||
#include <set>
|
||||
#include <list>
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class CallTargetFinder : public ModulePass {
|
||||
std::map<CallSite, std::vector<Function*> > IndMap;
|
||||
std::set<CallSite> CompleteSites;
|
||||
std::list<CallSite> AllSites;
|
||||
|
||||
void findIndTargets(Module &M);
|
||||
public:
|
||||
virtual bool runOnModule(Module &M);
|
||||
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
|
||||
|
||||
virtual void print(std::ostream &O, const Module *M) const;
|
||||
|
||||
// Given a CallSite, get an iterator of callees
|
||||
std::vector<Function*>::iterator begin(CallSite cs);
|
||||
std::vector<Function*>::iterator end(CallSite cs);
|
||||
|
||||
// Iterate over CallSites in program
|
||||
std::list<CallSite>::iterator cs_begin();
|
||||
std::list<CallSite>::iterator cs_end();
|
||||
|
||||
// Do we think we have complete knowledge of this site?
|
||||
// That is, do we think there are no missing callees
|
||||
bool isComplete(CallSite cs) const;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
@ -1,584 +0,0 @@
|
||||
//===- DSGraph.h - Represent a collection of data structures ----*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This header defines the data structure graph (DSGraph) and the
|
||||
// ReachabilityCloner class.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_ANALYSIS_DSGRAPH_H
|
||||
#define LLVM_ANALYSIS_DSGRAPH_H
|
||||
|
||||
#include "llvm/Analysis/DataStructure/DSNode.h"
|
||||
#include "llvm/ADT/hash_map"
|
||||
#include "llvm/ADT/EquivalenceClasses.h"
|
||||
#include <list>
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class GlobalValue;
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
/// DSScalarMap - An instance of this class is used to keep track of all of
|
||||
/// which DSNode each scalar in a function points to. This is specialized to
|
||||
/// keep track of globals with nodes in the function, and to keep track of the
|
||||
/// unique DSNodeHandle being used by the scalar map.
|
||||
///
|
||||
/// This class is crucial to the efficiency of DSA with some large SCC's. In
|
||||
/// these cases, the cost of iterating over the scalar map dominates the cost
|
||||
/// of DSA. In all of these cases, the DSA phase is really trying to identify
|
||||
/// globals or unique node handles active in the function.
|
||||
///
|
||||
class DSScalarMap {
|
||||
typedef hash_map<Value*, DSNodeHandle> ValueMapTy;
|
||||
ValueMapTy ValueMap;
|
||||
|
||||
typedef hash_set<GlobalValue*> GlobalSetTy;
|
||||
GlobalSetTy GlobalSet;
|
||||
|
||||
EquivalenceClasses<GlobalValue*> &GlobalECs;
|
||||
public:
|
||||
DSScalarMap(EquivalenceClasses<GlobalValue*> &ECs) : GlobalECs(ECs) {}
|
||||
|
||||
EquivalenceClasses<GlobalValue*> &getGlobalECs() const { return GlobalECs; }
|
||||
|
||||
// Compatibility methods: provide an interface compatible with a map of
|
||||
// Value* to DSNodeHandle's.
|
||||
typedef ValueMapTy::const_iterator const_iterator;
|
||||
typedef ValueMapTy::iterator iterator;
|
||||
iterator begin() { return ValueMap.begin(); }
|
||||
iterator end() { return ValueMap.end(); }
|
||||
const_iterator begin() const { return ValueMap.begin(); }
|
||||
const_iterator end() const { return ValueMap.end(); }
|
||||
|
||||
GlobalValue *getLeaderForGlobal(GlobalValue *GV) const {
|
||||
EquivalenceClasses<GlobalValue*>::iterator ECI = GlobalECs.findValue(GV);
|
||||
if (ECI == GlobalECs.end()) return GV;
|
||||
return *GlobalECs.findLeader(ECI);
|
||||
}
|
||||
|
||||
|
||||
iterator find(Value *V) {
|
||||
iterator I = ValueMap.find(V);
|
||||
if (I != ValueMap.end()) return I;
|
||||
|
||||
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
|
||||
// If this is a global, check to see if it is equivalenced to something
|
||||
// in the map.
|
||||
GlobalValue *Leader = getLeaderForGlobal(GV);
|
||||
if (Leader != GV)
|
||||
I = ValueMap.find((Value*)Leader);
|
||||
}
|
||||
return I;
|
||||
}
|
||||
const_iterator find(Value *V) const {
|
||||
const_iterator I = ValueMap.find(V);
|
||||
if (I != ValueMap.end()) return I;
|
||||
|
||||
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
|
||||
// If this is a global, check to see if it is equivalenced to something
|
||||
// in the map.
|
||||
GlobalValue *Leader = getLeaderForGlobal(GV);
|
||||
if (Leader != GV)
|
||||
I = ValueMap.find((Value*)Leader);
|
||||
}
|
||||
return I;
|
||||
}
|
||||
|
||||
/// getRawEntryRef - This method can be used by clients that are aware of the
|
||||
/// global value equivalence class in effect.
|
||||
DSNodeHandle &getRawEntryRef(Value *V) {
|
||||
std::pair<iterator,bool> IP =
|
||||
ValueMap.insert(std::make_pair(V, DSNodeHandle()));
|
||||
if (IP.second) // Inserted the new entry into the map.
|
||||
if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
|
||||
GlobalSet.insert(GV);
|
||||
return IP.first->second;
|
||||
}
|
||||
|
||||
unsigned count(Value *V) const { return ValueMap.find(V) != ValueMap.end(); }
|
||||
|
||||
void erase(Value *V) { erase(ValueMap.find(V)); }
|
||||
|
||||
void eraseIfExists(Value *V) {
|
||||
iterator I = find(V);
|
||||
if (I != end()) erase(I);
|
||||
}
|
||||
|
||||
/// replaceScalar - When an instruction needs to be modified, this method can
|
||||
/// be used to update the scalar map to remove the old and insert the new.
|
||||
///
|
||||
void replaceScalar(Value *Old, Value *New) {
|
||||
iterator I = find(Old);
|
||||
assert(I != end() && "Old value is not in the map!");
|
||||
ValueMap.insert(std::make_pair(New, I->second));
|
||||
erase(I);
|
||||
}
|
||||
|
||||
/// copyScalarIfExists - If Old exists in the scalar map, make New point to
|
||||
/// whatever Old did.
|
||||
void copyScalarIfExists(Value *Old, Value *New) {
|
||||
iterator I = find(Old);
|
||||
if (I != end())
|
||||
ValueMap.insert(std::make_pair(New, I->second));
|
||||
}
|
||||
|
||||
/// operator[] - Return the DSNodeHandle for the specified value, creating a
|
||||
/// new null handle if there is no entry yet.
|
||||
DSNodeHandle &operator[](Value *V) {
|
||||
iterator I = ValueMap.find(V);
|
||||
if (I != ValueMap.end())
|
||||
return I->second; // Return value if already exists.
|
||||
|
||||
if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
|
||||
return AddGlobal(GV);
|
||||
|
||||
return ValueMap.insert(std::make_pair(V, DSNodeHandle())).first->second;
|
||||
}
|
||||
|
||||
void erase(iterator I) {
|
||||
assert(I != ValueMap.end() && "Cannot erase end!");
|
||||
if (GlobalValue *GV = dyn_cast<GlobalValue>(I->first))
|
||||
GlobalSet.erase(GV);
|
||||
ValueMap.erase(I);
|
||||
}
|
||||
|
||||
void clear() {
|
||||
ValueMap.clear();
|
||||
GlobalSet.clear();
|
||||
}
|
||||
|
||||
/// spliceFrom - Copy all entries from RHS, then clear RHS.
|
||||
///
|
||||
void spliceFrom(DSScalarMap &RHS);
|
||||
|
||||
// Access to the global set: the set of all globals currently in the
|
||||
// scalar map.
|
||||
typedef GlobalSetTy::const_iterator global_iterator;
|
||||
global_iterator global_begin() const { return GlobalSet.begin(); }
|
||||
global_iterator global_end() const { return GlobalSet.end(); }
|
||||
unsigned global_size() const { return GlobalSet.size(); }
|
||||
unsigned global_count(GlobalValue *GV) const { return GlobalSet.count(GV); }
|
||||
private:
|
||||
DSNodeHandle &AddGlobal(GlobalValue *GV);
|
||||
};
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
/// DSGraph - The graph that represents a function.
|
||||
///
|
||||
class DSGraph {
|
||||
public:
|
||||
// Public data-type declarations...
|
||||
typedef DSScalarMap ScalarMapTy;
|
||||
typedef hash_map<Function*, DSNodeHandle> ReturnNodesTy;
|
||||
typedef ilist<DSNode> NodeListTy;
|
||||
|
||||
/// NodeMapTy - This data type is used when cloning one graph into another to
|
||||
/// keep track of the correspondence between the nodes in the old and new
|
||||
/// graphs.
|
||||
typedef hash_map<const DSNode*, DSNodeHandle> NodeMapTy;
|
||||
|
||||
// InvNodeMapTy - This data type is used to represent the inverse of a node
|
||||
// map.
|
||||
typedef hash_multimap<DSNodeHandle, const DSNode*> InvNodeMapTy;
|
||||
private:
|
||||
DSGraph *GlobalsGraph; // Pointer to the common graph of global objects
|
||||
bool PrintAuxCalls; // Should this graph print the Aux calls vector?
|
||||
|
||||
NodeListTy Nodes;
|
||||
ScalarMapTy ScalarMap;
|
||||
|
||||
// ReturnNodes - A return value for every function merged into this graph.
|
||||
// Each DSGraph may have multiple functions merged into it at any time, which
|
||||
// is used for representing SCCs.
|
||||
//
|
||||
ReturnNodesTy ReturnNodes;
|
||||
|
||||
// FunctionCalls - This list maintains a single entry for each call
|
||||
// instruction in the current graph. The first entry in the vector is the
|
||||
// scalar that holds the return value for the call, the second is the function
|
||||
// scalar being invoked, and the rest are pointer arguments to the function.
|
||||
// This vector is built by the Local graph and is never modified after that.
|
||||
//
|
||||
std::list<DSCallSite> FunctionCalls;
|
||||
|
||||
// AuxFunctionCalls - This vector contains call sites that have been processed
|
||||
// by some mechanism. In pratice, the BU Analysis uses this vector to hold
|
||||
// the _unresolved_ call sites, because it cannot modify FunctionCalls.
|
||||
//
|
||||
std::list<DSCallSite> AuxFunctionCalls;
|
||||
|
||||
/// TD - This is the target data object for the machine this graph is
|
||||
/// constructed for.
|
||||
const TargetData &TD;
|
||||
|
||||
void operator=(const DSGraph &); // DO NOT IMPLEMENT
|
||||
DSGraph(const DSGraph&); // DO NOT IMPLEMENT
|
||||
public:
|
||||
// Create a new, empty, DSGraph.
|
||||
DSGraph(EquivalenceClasses<GlobalValue*> &ECs, const TargetData &td)
|
||||
: GlobalsGraph(0), PrintAuxCalls(false), ScalarMap(ECs), TD(td) {}
|
||||
|
||||
// Compute the local DSGraph
|
||||
DSGraph(EquivalenceClasses<GlobalValue*> &ECs, const TargetData &TD,
|
||||
Function &F, DSGraph *GlobalsGraph);
|
||||
|
||||
// Copy ctor - If you want to capture the node mapping between the source and
|
||||
// destination graph, you may optionally do this by specifying a map to record
|
||||
// this into.
|
||||
//
|
||||
// Note that a copied graph does not retain the GlobalsGraph pointer of the
|
||||
// source. You need to set a new GlobalsGraph with the setGlobalsGraph
|
||||
// method.
|
||||
//
|
||||
DSGraph(const DSGraph &DSG, EquivalenceClasses<GlobalValue*> &ECs,
|
||||
unsigned CloneFlags = 0);
|
||||
~DSGraph();
|
||||
|
||||
DSGraph *getGlobalsGraph() const { return GlobalsGraph; }
|
||||
void setGlobalsGraph(DSGraph *G) { GlobalsGraph = G; }
|
||||
|
||||
/// getGlobalECs - Return the set of equivalence classes that the global
|
||||
/// variables in the program form.
|
||||
EquivalenceClasses<GlobalValue*> &getGlobalECs() const {
|
||||
return ScalarMap.getGlobalECs();
|
||||
}
|
||||
|
||||
/// getTargetData - Return the TargetData object for the current target.
|
||||
///
|
||||
const TargetData &getTargetData() const { return TD; }
|
||||
|
||||
/// setPrintAuxCalls - If you call this method, the auxillary call vector will
|
||||
/// be printed instead of the standard call vector to the dot file.
|
||||
///
|
||||
void setPrintAuxCalls() { PrintAuxCalls = true; }
|
||||
bool shouldPrintAuxCalls() const { return PrintAuxCalls; }
|
||||
|
||||
/// node_iterator/begin/end - Iterate over all of the nodes in the graph. Be
|
||||
/// extremely careful with these methods because any merging of nodes could
|
||||
/// cause the node to be removed from this list. This means that if you are
|
||||
/// iterating over nodes and doing something that could cause _any_ node to
|
||||
/// merge, your node_iterators into this graph can be invalidated.
|
||||
typedef NodeListTy::iterator node_iterator;
|
||||
node_iterator node_begin() { return Nodes.begin(); }
|
||||
node_iterator node_end() { return Nodes.end(); }
|
||||
|
||||
typedef NodeListTy::const_iterator node_const_iterator;
|
||||
node_const_iterator node_begin() const { return Nodes.begin(); }
|
||||
node_const_iterator node_end() const { return Nodes.end(); }
|
||||
|
||||
/// getFunctionNames - Return a space separated list of the name of the
|
||||
/// functions in this graph (if any)
|
||||
///
|
||||
std::string getFunctionNames() const;
|
||||
|
||||
/// addNode - Add a new node to the graph.
|
||||
///
|
||||
void addNode(DSNode *N) { Nodes.push_back(N); }
|
||||
void unlinkNode(DSNode *N) { Nodes.remove(N); }
|
||||
|
||||
/// getScalarMap - Get a map that describes what the nodes the scalars in this
|
||||
/// function point to...
|
||||
///
|
||||
ScalarMapTy &getScalarMap() { return ScalarMap; }
|
||||
const ScalarMapTy &getScalarMap() const { return ScalarMap; }
|
||||
|
||||
/// getFunctionCalls - Return the list of call sites in the original local
|
||||
/// graph...
|
||||
///
|
||||
const std::list<DSCallSite> &getFunctionCalls() const { return FunctionCalls;}
|
||||
std::list<DSCallSite> &getFunctionCalls() { return FunctionCalls;}
|
||||
|
||||
/// getAuxFunctionCalls - Get the call sites as modified by whatever passes
|
||||
/// have been run.
|
||||
///
|
||||
std::list<DSCallSite> &getAuxFunctionCalls() { return AuxFunctionCalls; }
|
||||
const std::list<DSCallSite> &getAuxFunctionCalls() const {
|
||||
return AuxFunctionCalls;
|
||||
}
|
||||
|
||||
// Function Call iteration
|
||||
typedef std::list<DSCallSite>::const_iterator fc_iterator;
|
||||
fc_iterator fc_begin() const { return FunctionCalls.begin(); }
|
||||
fc_iterator fc_end() const { return FunctionCalls.end(); }
|
||||
|
||||
|
||||
// Aux Function Call iteration
|
||||
typedef std::list<DSCallSite>::const_iterator afc_iterator;
|
||||
afc_iterator afc_begin() const { return AuxFunctionCalls.begin(); }
|
||||
afc_iterator afc_end() const { return AuxFunctionCalls.end(); }
|
||||
|
||||
/// getNodeForValue - Given a value that is used or defined in the body of the
|
||||
/// current function, return the DSNode that it points to.
|
||||
///
|
||||
DSNodeHandle &getNodeForValue(Value *V) { return ScalarMap[V]; }
|
||||
|
||||
const DSNodeHandle &getNodeForValue(Value *V) const {
|
||||
ScalarMapTy::const_iterator I = ScalarMap.find(V);
|
||||
assert(I != ScalarMap.end() &&
|
||||
"Use non-const lookup function if node may not be in the map");
|
||||
return I->second;
|
||||
}
|
||||
|
||||
/// retnodes_* iterator methods: expose iteration over return nodes in the
|
||||
/// graph, which are also the set of functions incorporated in this graph.
|
||||
typedef ReturnNodesTy::const_iterator retnodes_iterator;
|
||||
retnodes_iterator retnodes_begin() const { return ReturnNodes.begin(); }
|
||||
retnodes_iterator retnodes_end() const { return ReturnNodes.end(); }
|
||||
|
||||
|
||||
/// getReturnNodes - Return the mapping of functions to their return nodes for
|
||||
/// this graph.
|
||||
///
|
||||
const ReturnNodesTy &getReturnNodes() const { return ReturnNodes; }
|
||||
ReturnNodesTy &getReturnNodes() { return ReturnNodes; }
|
||||
|
||||
/// getReturnNodeFor - Return the return node for the specified function.
|
||||
///
|
||||
DSNodeHandle &getReturnNodeFor(Function &F) {
|
||||
ReturnNodesTy::iterator I = ReturnNodes.find(&F);
|
||||
assert(I != ReturnNodes.end() && "F not in this DSGraph!");
|
||||
return I->second;
|
||||
}
|
||||
|
||||
const DSNodeHandle &getReturnNodeFor(Function &F) const {
|
||||
ReturnNodesTy::const_iterator I = ReturnNodes.find(&F);
|
||||
assert(I != ReturnNodes.end() && "F not in this DSGraph!");
|
||||
return I->second;
|
||||
}
|
||||
|
||||
/// containsFunction - Return true if this DSGraph contains information for
|
||||
/// the specified function.
|
||||
bool containsFunction(Function *F) const {
|
||||
return ReturnNodes.count(F);
|
||||
}
|
||||
|
||||
/// getGraphSize - Return the number of nodes in this graph.
|
||||
///
|
||||
unsigned getGraphSize() const {
|
||||
return Nodes.size();
|
||||
}
|
||||
|
||||
/// addObjectToGraph - This method can be used to add global, stack, and heap
|
||||
/// objects to the graph. This can be used when updating DSGraphs due to the
|
||||
/// introduction of new temporary objects. The new object is not pointed to
|
||||
/// and does not point to any other objects in the graph. Note that this
|
||||
/// method initializes the type of the DSNode to the declared type of the
|
||||
/// object if UseDeclaredType is true, otherwise it leaves the node type as
|
||||
/// void.
|
||||
DSNode *addObjectToGraph(Value *Ptr, bool UseDeclaredType = true);
|
||||
|
||||
|
||||
/// print - Print a dot graph to the specified ostream...
|
||||
///
|
||||
void print(OStream &O) const {
|
||||
if (O.stream()) print(*O.stream());
|
||||
}
|
||||
void print(std::ostream &O) const;
|
||||
|
||||
/// dump - call print(cerr), for use from the debugger...
|
||||
///
|
||||
void dump() const;
|
||||
|
||||
/// viewGraph - Emit a dot graph, run 'dot', run gv on the postscript file,
|
||||
/// then cleanup. For use from the debugger.
|
||||
///
|
||||
void viewGraph() const;
|
||||
|
||||
void writeGraphToFile(std::ostream &O, const std::string &GraphName) const;
|
||||
|
||||
/// maskNodeTypes - Apply a mask to all of the node types in the graph. This
|
||||
/// is useful for clearing out markers like Incomplete.
|
||||
///
|
||||
void maskNodeTypes(unsigned Mask) {
|
||||
for (node_iterator I = node_begin(), E = node_end(); I != E; ++I)
|
||||
I->maskNodeTypes(Mask);
|
||||
}
|
||||
void maskIncompleteMarkers() { maskNodeTypes(~DSNode::Incomplete); }
|
||||
|
||||
// markIncompleteNodes - Traverse the graph, identifying nodes that may be
|
||||
// modified by other functions that have not been resolved yet. This marks
|
||||
// nodes that are reachable through three sources of "unknownness":
|
||||
// Global Variables, Function Calls, and Incoming Arguments
|
||||
//
|
||||
// For any node that may have unknown components (because something outside
|
||||
// the scope of current analysis may have modified it), the 'Incomplete' flag
|
||||
// is added to the NodeType.
|
||||
//
|
||||
enum MarkIncompleteFlags {
|
||||
MarkFormalArgs = 1, IgnoreFormalArgs = 0,
|
||||
IgnoreGlobals = 2, MarkGlobalsIncomplete = 0
|
||||
};
|
||||
void markIncompleteNodes(unsigned Flags);
|
||||
|
||||
// removeDeadNodes - Use a reachability analysis to eliminate subgraphs that
|
||||
// are unreachable. This often occurs because the data structure doesn't
|
||||
// "escape" into it's caller, and thus should be eliminated from the caller's
|
||||
// graph entirely. This is only appropriate to use when inlining graphs.
|
||||
//
|
||||
enum RemoveDeadNodesFlags {
|
||||
RemoveUnreachableGlobals = 1, KeepUnreachableGlobals = 0
|
||||
};
|
||||
void removeDeadNodes(unsigned Flags);
|
||||
|
||||
/// CloneFlags enum - Bits that may be passed into the cloneInto method to
|
||||
/// specify how to clone the function graph.
|
||||
enum CloneFlags {
|
||||
StripAllocaBit = 1 << 0, KeepAllocaBit = 0,
|
||||
DontCloneCallNodes = 1 << 1, CloneCallNodes = 0,
|
||||
DontCloneAuxCallNodes = 1 << 2, CloneAuxCallNodes = 0,
|
||||
StripModRefBits = 1 << 3, KeepModRefBits = 0,
|
||||
StripIncompleteBit = 1 << 4, KeepIncompleteBit = 0
|
||||
};
|
||||
|
||||
void updateFromGlobalGraph();
|
||||
|
||||
/// computeNodeMapping - Given roots in two different DSGraphs, traverse the
|
||||
/// nodes reachable from the two graphs, computing the mapping of nodes from
|
||||
/// the first to the second graph.
|
||||
///
|
||||
static void computeNodeMapping(const DSNodeHandle &NH1,
|
||||
const DSNodeHandle &NH2, NodeMapTy &NodeMap,
|
||||
bool StrictChecking = true);
|
||||
|
||||
/// computeGToGGMapping - Compute the mapping of nodes in the graph to nodes
|
||||
/// in the globals graph.
|
||||
void computeGToGGMapping(NodeMapTy &NodeMap);
|
||||
|
||||
/// computeGGToGMapping - Compute the mapping of nodes in the global
|
||||
/// graph to nodes in this graph.
|
||||
void computeGGToGMapping(InvNodeMapTy &InvNodeMap);
|
||||
|
||||
/// computeCalleeCallerMapping - Given a call from a function in the current
|
||||
/// graph to the 'Callee' function (which lives in 'CalleeGraph'), compute the
|
||||
/// mapping of nodes from the callee to nodes in the caller.
|
||||
void computeCalleeCallerMapping(DSCallSite CS, const Function &Callee,
|
||||
DSGraph &CalleeGraph, NodeMapTy &NodeMap);
|
||||
|
||||
/// spliceFrom - Logically perform the operation of cloning the RHS graph into
|
||||
/// this graph, then clearing the RHS graph. Instead of performing this as
|
||||
/// two seperate operations, do it as a single, much faster, one.
|
||||
///
|
||||
void spliceFrom(DSGraph &RHS);
|
||||
|
||||
/// cloneInto - Clone the specified DSGraph into the current graph.
|
||||
///
|
||||
/// The CloneFlags member controls various aspects of the cloning process.
|
||||
///
|
||||
void cloneInto(const DSGraph &G, unsigned CloneFlags = 0);
|
||||
|
||||
/// getFunctionArgumentsForCall - Given a function that is currently in this
|
||||
/// graph, return the DSNodeHandles that correspond to the pointer-compatible
|
||||
/// function arguments. The vector is filled in with the return value (or
|
||||
/// null if it is not pointer compatible), followed by all of the
|
||||
/// pointer-compatible arguments.
|
||||
void getFunctionArgumentsForCall(Function *F,
|
||||
std::vector<DSNodeHandle> &Args) const;
|
||||
|
||||
/// mergeInGraph - This graph merges in the minimal number of
|
||||
/// nodes from G2 into 'this' graph, merging the bindings specified by the
|
||||
/// call site (in this graph) with the bindings specified by the vector in G2.
|
||||
/// If the StripAlloca's argument is 'StripAllocaBit' then Alloca markers are
|
||||
/// removed from nodes.
|
||||
///
|
||||
void mergeInGraph(const DSCallSite &CS, std::vector<DSNodeHandle> &Args,
|
||||
const DSGraph &G2, unsigned CloneFlags);
|
||||
|
||||
/// mergeInGraph - This method is the same as the above method, but the
|
||||
/// argument bindings are provided by using the formal arguments of F.
|
||||
///
|
||||
void mergeInGraph(const DSCallSite &CS, Function &F, const DSGraph &Graph,
|
||||
unsigned CloneFlags);
|
||||
|
||||
/// getCallSiteForArguments - Get the arguments and return value bindings for
|
||||
/// the specified function in the current graph.
|
||||
///
|
||||
DSCallSite getCallSiteForArguments(Function &F) const;
|
||||
|
||||
/// getDSCallSiteForCallSite - Given an LLVM CallSite object that is live in
|
||||
/// the context of this graph, return the DSCallSite for it.
|
||||
DSCallSite getDSCallSiteForCallSite(CallSite CS) const;
|
||||
|
||||
// Methods for checking to make sure graphs are well formed...
|
||||
void AssertNodeInGraph(const DSNode *N) const {
|
||||
assert((!N || N->getParentGraph() == this) &&
|
||||
"AssertNodeInGraph: Node is not in graph!");
|
||||
}
|
||||
void AssertNodeContainsGlobal(const DSNode *N, GlobalValue *GV) const;
|
||||
|
||||
void AssertCallSiteInGraph(const DSCallSite &CS) const;
|
||||
void AssertCallNodesInGraph() const;
|
||||
void AssertAuxCallNodesInGraph() const;
|
||||
|
||||
void AssertGraphOK() const;
|
||||
|
||||
/// removeTriviallyDeadNodes - After the graph has been constructed, this
|
||||
/// method removes all unreachable nodes that are created because they got
|
||||
/// merged with other nodes in the graph. This is used as the first step of
|
||||
/// removeDeadNodes.
|
||||
///
|
||||
void removeTriviallyDeadNodes();
|
||||
};
|
||||
|
||||
|
||||
/// ReachabilityCloner - This class is used to incrementally clone and merge
|
||||
/// nodes from a non-changing source graph into a potentially mutating
|
||||
/// destination graph. Nodes are only cloned over on demand, either in
|
||||
/// responds to a merge() or getClonedNH() call. When a node is cloned over,
|
||||
/// all of the nodes reachable from it are automatically brought over as well.
|
||||
///
|
||||
class ReachabilityCloner {
|
||||
DSGraph &Dest;
|
||||
const DSGraph &Src;
|
||||
|
||||
/// BitsToKeep - These bits are retained from the source node when the
|
||||
/// source nodes are merged into the destination graph.
|
||||
unsigned BitsToKeep;
|
||||
unsigned CloneFlags;
|
||||
|
||||
// NodeMap - A mapping from nodes in the source graph to the nodes that
|
||||
// represent them in the destination graph.
|
||||
DSGraph::NodeMapTy NodeMap;
|
||||
public:
|
||||
ReachabilityCloner(DSGraph &dest, const DSGraph &src, unsigned cloneFlags)
|
||||
: Dest(dest), Src(src), CloneFlags(cloneFlags) {
|
||||
assert(&Dest != &Src && "Cannot clone from graph to same graph!");
|
||||
BitsToKeep = ~DSNode::DEAD;
|
||||
if (CloneFlags & DSGraph::StripAllocaBit)
|
||||
BitsToKeep &= ~DSNode::AllocaNode;
|
||||
if (CloneFlags & DSGraph::StripModRefBits)
|
||||
BitsToKeep &= ~(DSNode::Modified | DSNode::Read);
|
||||
if (CloneFlags & DSGraph::StripIncompleteBit)
|
||||
BitsToKeep &= ~DSNode::Incomplete;
|
||||
}
|
||||
|
||||
DSNodeHandle getClonedNH(const DSNodeHandle &SrcNH);
|
||||
|
||||
void merge(const DSNodeHandle &NH, const DSNodeHandle &SrcNH);
|
||||
|
||||
/// mergeCallSite - Merge the nodes reachable from the specified src call
|
||||
/// site into the nodes reachable from DestCS.
|
||||
///
|
||||
void mergeCallSite(DSCallSite &DestCS, const DSCallSite &SrcCS);
|
||||
|
||||
bool clonedAnyNodes() const { return !NodeMap.empty(); }
|
||||
|
||||
/// hasClonedNode - Return true if the specified node has been cloned from
|
||||
/// the source graph into the destination graph.
|
||||
bool hasClonedNode(const DSNode *N) {
|
||||
return NodeMap.count(N);
|
||||
}
|
||||
|
||||
void destroy() { NodeMap.clear(); }
|
||||
};
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
#endif
|
@ -1,152 +0,0 @@
|
||||
//===- DSGraphTraits.h - Provide generic graph interface --------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file provides GraphTraits specializations for the DataStructure graph
|
||||
// nodes, allowing datastructure graphs to be processed by generic graph
|
||||
// algorithms.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_ANALYSIS_DSGRAPHTRAITS_H
|
||||
#define LLVM_ANALYSIS_DSGRAPHTRAITS_H
|
||||
|
||||
#include "llvm/Analysis/DataStructure/DSGraph.h"
|
||||
#include "llvm/ADT/GraphTraits.h"
|
||||
#include "llvm/ADT/iterator"
|
||||
#include "llvm/ADT/STLExtras.h"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
template<typename NodeTy>
|
||||
class DSNodeIterator : public forward_iterator<const DSNode, ptrdiff_t> {
|
||||
friend class DSNode;
|
||||
NodeTy * const Node;
|
||||
unsigned Offset;
|
||||
|
||||
typedef DSNodeIterator<NodeTy> _Self;
|
||||
|
||||
DSNodeIterator(NodeTy *N) : Node(N), Offset(0) {} // begin iterator
|
||||
DSNodeIterator(NodeTy *N, bool) : Node(N) { // Create end iterator
|
||||
if (N != 0) {
|
||||
Offset = N->getNumLinks() << DS::PointerShift;
|
||||
if (Offset == 0 && Node->getForwardNode() &&
|
||||
Node->isDeadNode()) // Model Forward link
|
||||
Offset += DS::PointerSize;
|
||||
} else {
|
||||
Offset = 0;
|
||||
}
|
||||
}
|
||||
public:
|
||||
DSNodeIterator(const DSNodeHandle &NH)
|
||||
: Node(NH.getNode()), Offset(NH.getOffset()) {}
|
||||
|
||||
bool operator==(const _Self& x) const {
|
||||
return Offset == x.Offset;
|
||||
}
|
||||
bool operator!=(const _Self& x) const { return !operator==(x); }
|
||||
|
||||
const _Self &operator=(const _Self &I) {
|
||||
assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
|
||||
Offset = I.Offset;
|
||||
return *this;
|
||||
}
|
||||
|
||||
pointer operator*() const {
|
||||
if (Node->isDeadNode())
|
||||
return Node->getForwardNode();
|
||||
else
|
||||
return Node->getLink(Offset).getNode();
|
||||
}
|
||||
pointer operator->() const { return operator*(); }
|
||||
|
||||
_Self& operator++() { // Preincrement
|
||||
Offset += (1 << DS::PointerShift);
|
||||
return *this;
|
||||
}
|
||||
_Self operator++(int) { // Postincrement
|
||||
_Self tmp = *this; ++*this; return tmp;
|
||||
}
|
||||
|
||||
unsigned getOffset() const { return Offset; }
|
||||
const DSNode *getNode() const { return Node; }
|
||||
};
|
||||
|
||||
// Provide iterators for DSNode...
|
||||
inline DSNode::iterator DSNode::begin() {
|
||||
return DSNode::iterator(this);
|
||||
}
|
||||
inline DSNode::iterator DSNode::end() {
|
||||
return DSNode::iterator(this, false);
|
||||
}
|
||||
inline DSNode::const_iterator DSNode::begin() const {
|
||||
return DSNode::const_iterator(this);
|
||||
}
|
||||
inline DSNode::const_iterator DSNode::end() const {
|
||||
return DSNode::const_iterator(this, false);
|
||||
}
|
||||
|
||||
template <> struct GraphTraits<DSNode*> {
|
||||
typedef DSNode NodeType;
|
||||
typedef DSNode::iterator ChildIteratorType;
|
||||
|
||||
static NodeType *getEntryNode(NodeType *N) { return N; }
|
||||
static ChildIteratorType child_begin(NodeType *N) { return N->begin(); }
|
||||
static ChildIteratorType child_end(NodeType *N) { return N->end(); }
|
||||
};
|
||||
|
||||
template <> struct GraphTraits<const DSNode*> {
|
||||
typedef const DSNode NodeType;
|
||||
typedef DSNode::const_iterator ChildIteratorType;
|
||||
|
||||
static NodeType *getEntryNode(NodeType *N) { return N; }
|
||||
static ChildIteratorType child_begin(NodeType *N) { return N->begin(); }
|
||||
static ChildIteratorType child_end(NodeType *N) { return N->end(); }
|
||||
};
|
||||
|
||||
static DSNode &dereference ( DSNode *N) { return *N; }
|
||||
|
||||
template <> struct GraphTraits<DSGraph*> {
|
||||
typedef DSNode NodeType;
|
||||
typedef DSNode::iterator ChildIteratorType;
|
||||
|
||||
typedef std::pointer_to_unary_function<DSNode *, DSNode&> DerefFun;
|
||||
|
||||
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph
|
||||
typedef mapped_iterator<DSGraph::node_iterator, DerefFun> nodes_iterator;
|
||||
static nodes_iterator nodes_begin(DSGraph *G) {
|
||||
return map_iterator(G->node_begin(), DerefFun(dereference));
|
||||
}
|
||||
static nodes_iterator nodes_end(DSGraph *G) {
|
||||
return map_iterator(G->node_end(), DerefFun(dereference));
|
||||
}
|
||||
|
||||
static ChildIteratorType child_begin(NodeType *N) { return N->begin(); }
|
||||
static ChildIteratorType child_end(NodeType *N) { return N->end(); }
|
||||
};
|
||||
|
||||
template <> struct GraphTraits<const DSGraph*> {
|
||||
typedef const DSNode NodeType;
|
||||
typedef DSNode::const_iterator ChildIteratorType;
|
||||
|
||||
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph
|
||||
typedef DSGraph::node_const_iterator nodes_iterator;
|
||||
static nodes_iterator nodes_begin(const DSGraph *G) {
|
||||
return G->node_begin();
|
||||
}
|
||||
static nodes_iterator nodes_end(const DSGraph *G) {
|
||||
return G->node_end();
|
||||
}
|
||||
|
||||
static ChildIteratorType child_begin(const NodeType *N) { return N->begin(); }
|
||||
static ChildIteratorType child_end(const NodeType *N) { return N->end(); }
|
||||
};
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
#endif
|
@ -1,510 +0,0 @@
|
||||
//===- DSNode.h - Node definition for datastructure graphs ------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Data structure graph nodes and some implementation of DSNodeHandle.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_ANALYSIS_DSNODE_H
|
||||
#define LLVM_ANALYSIS_DSNODE_H
|
||||
|
||||
#include "llvm/Analysis/DataStructure/DSSupport.h"
|
||||
#include "llvm/ADT/hash_map"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
template<typename BaseType>
|
||||
class DSNodeIterator; // Data structure graph traversal iterator
|
||||
class TargetData;
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
/// DSNode - Data structure node class
|
||||
///
|
||||
/// This class represents an untyped memory object of Size bytes. It keeps
|
||||
/// track of any pointers that have been stored into the object as well as the
|
||||
/// different types represented in this object.
|
||||
///
|
||||
class DSNode {
|
||||
/// NumReferrers - The number of DSNodeHandles pointing to this node... if
|
||||
/// this is a forwarding node, then this is the number of node handles which
|
||||
/// are still forwarding over us.
|
||||
///
|
||||
unsigned NumReferrers;
|
||||
|
||||
/// ForwardNH - This NodeHandle contain the node (and offset into the node)
|
||||
/// that this node really is. When nodes get folded together, the node to be
|
||||
/// eliminated has these fields filled in, otherwise ForwardNH.getNode() is
|
||||
/// null.
|
||||
///
|
||||
DSNodeHandle ForwardNH;
|
||||
|
||||
/// Next, Prev - These instance variables are used to keep the node on a
|
||||
/// doubly-linked ilist in the DSGraph.
|
||||
///
|
||||
DSNode *Next, *Prev;
|
||||
friend struct ilist_traits<DSNode>;
|
||||
|
||||
/// Size - The current size of the node. This should be equal to the size of
|
||||
/// the current type record.
|
||||
///
|
||||
unsigned Size;
|
||||
|
||||
/// ParentGraph - The graph this node is currently embedded into.
|
||||
///
|
||||
DSGraph *ParentGraph;
|
||||
|
||||
/// Ty - Keep track of the current outer most type of this object, in addition
|
||||
/// to whether or not it has been indexed like an array or not. If the
|
||||
/// isArray bit is set, the node cannot grow.
|
||||
///
|
||||
const Type *Ty; // The type itself...
|
||||
|
||||
/// Links - Contains one entry for every sizeof(void*) bytes in this memory
|
||||
/// object. Note that if the node is not a multiple of size(void*) bytes
|
||||
/// large, that there is an extra entry for the "remainder" of the node as
|
||||
/// well. For this reason, nodes of 1 byte in size do have one link.
|
||||
///
|
||||
std::vector<DSNodeHandle> Links;
|
||||
|
||||
/// Globals - The list of global values that are merged into this node.
|
||||
///
|
||||
std::vector<GlobalValue*> Globals;
|
||||
|
||||
void operator=(const DSNode &); // DO NOT IMPLEMENT
|
||||
DSNode(const DSNode &); // DO NOT IMPLEMENT
|
||||
public:
|
||||
enum NodeTy {
|
||||
ShadowNode = 0, // Nothing is known about this node...
|
||||
AllocaNode = 1 << 0, // This node was allocated with alloca
|
||||
HeapNode = 1 << 1, // This node was allocated with malloc
|
||||
GlobalNode = 1 << 2, // This node was allocated by a global var decl
|
||||
UnknownNode = 1 << 3, // This node points to unknown allocated memory
|
||||
Incomplete = 1 << 4, // This node may not be complete
|
||||
|
||||
Modified = 1 << 5, // This node is modified in this context
|
||||
Read = 1 << 6, // This node is read in this context
|
||||
|
||||
Array = 1 << 7, // This node is treated like an array
|
||||
//#ifndef NDEBUG
|
||||
DEAD = 1 << 8, // This node is dead and should not be pointed to
|
||||
//#endif
|
||||
|
||||
Composition = AllocaNode | HeapNode | GlobalNode | UnknownNode
|
||||
};
|
||||
|
||||
/// NodeType - A union of the above bits. "Shadow" nodes do not add any flags
|
||||
/// to the nodes in the data structure graph, so it is possible to have nodes
|
||||
/// with a value of 0 for their NodeType.
|
||||
///
|
||||
private:
|
||||
unsigned short NodeType;
|
||||
public:
|
||||
|
||||
/// DSNode ctor - Create a node of the specified type, inserting it into the
|
||||
/// specified graph.
|
||||
///
|
||||
DSNode(const Type *T, DSGraph *G);
|
||||
|
||||
/// DSNode "copy ctor" - Copy the specified node, inserting it into the
|
||||
/// specified graph. If NullLinks is true, then null out all of the links,
|
||||
/// but keep the same number of them. This can be used for efficiency if the
|
||||
/// links are just going to be clobbered anyway.
|
||||
///
|
||||
DSNode(const DSNode &, DSGraph *G, bool NullLinks = false);
|
||||
|
||||
~DSNode() {
|
||||
dropAllReferences();
|
||||
assert(hasNoReferrers() && "Referrers to dead node exist!");
|
||||
}
|
||||
|
||||
// Iterator for graph interface... Defined in DSGraphTraits.h
|
||||
typedef DSNodeIterator<DSNode> iterator;
|
||||
typedef DSNodeIterator<const DSNode> const_iterator;
|
||||
inline iterator begin();
|
||||
inline iterator end();
|
||||
inline const_iterator begin() const;
|
||||
inline const_iterator end() const;
|
||||
|
||||
//===--------------------------------------------------
|
||||
// Accessors
|
||||
|
||||
/// getSize - Return the maximum number of bytes occupied by this object...
|
||||
///
|
||||
unsigned getSize() const { return Size; }
|
||||
|
||||
/// getType - Return the node type of this object...
|
||||
///
|
||||
const Type *getType() const { return Ty; }
|
||||
|
||||
bool isArray() const { return NodeType & Array; }
|
||||
|
||||
/// hasNoReferrers - Return true if nothing is pointing to this node at all.
|
||||
///
|
||||
bool hasNoReferrers() const { return getNumReferrers() == 0; }
|
||||
|
||||
/// getNumReferrers - This method returns the number of referrers to the
|
||||
/// current node. Note that if this node is a forwarding node, this will
|
||||
/// return the number of nodes forwarding over the node!
|
||||
unsigned getNumReferrers() const { return NumReferrers; }
|
||||
|
||||
DSGraph *getParentGraph() const { return ParentGraph; }
|
||||
void setParentGraph(DSGraph *G) { ParentGraph = G; }
|
||||
|
||||
|
||||
/// getTargetData - Get the target data object used to construct this node.
|
||||
///
|
||||
const TargetData &getTargetData() const;
|
||||
|
||||
/// getForwardNode - This method returns the node that this node is forwarded
|
||||
/// to, if any.
|
||||
///
|
||||
DSNode *getForwardNode() const { return ForwardNH.getNode(); }
|
||||
|
||||
/// isForwarding - Return true if this node is forwarding to another.
|
||||
///
|
||||
bool isForwarding() const { return !ForwardNH.isNull(); }
|
||||
|
||||
/// stopForwarding - When the last reference to this forwarding node has been
|
||||
/// dropped, delete the node.
|
||||
///
|
||||
void stopForwarding() {
|
||||
assert(isForwarding() &&
|
||||
"Node isn't forwarding, cannot stopForwarding()!");
|
||||
ForwardNH.setTo(0, 0);
|
||||
assert(ParentGraph == 0 &&
|
||||
"Forwarding nodes must have been removed from graph!");
|
||||
delete this;
|
||||
}
|
||||
|
||||
/// hasLink - Return true if this memory object has a link in slot LinkNo
|
||||
///
|
||||
bool hasLink(unsigned Offset) const {
|
||||
assert((Offset & ((1 << DS::PointerShift)-1)) == 0 &&
|
||||
"Pointer offset not aligned correctly!");
|
||||
unsigned Index = Offset >> DS::PointerShift;
|
||||
assert(Index < Links.size() && "Link index is out of range!");
|
||||
return Links[Index].getNode();
|
||||
}
|
||||
|
||||
/// getLink - Return the link at the specified offset.
|
||||
///
|
||||
DSNodeHandle &getLink(unsigned Offset) {
|
||||
assert((Offset & ((1 << DS::PointerShift)-1)) == 0 &&
|
||||
"Pointer offset not aligned correctly!");
|
||||
unsigned Index = Offset >> DS::PointerShift;
|
||||
assert(Index < Links.size() && "Link index is out of range!");
|
||||
return Links[Index];
|
||||
}
|
||||
const DSNodeHandle &getLink(unsigned Offset) const {
|
||||
assert((Offset & ((1 << DS::PointerShift)-1)) == 0 &&
|
||||
"Pointer offset not aligned correctly!");
|
||||
unsigned Index = Offset >> DS::PointerShift;
|
||||
assert(Index < Links.size() && "Link index is out of range!");
|
||||
return Links[Index];
|
||||
}
|
||||
|
||||
/// getNumLinks - Return the number of links in a node...
|
||||
///
|
||||
unsigned getNumLinks() const { return Links.size(); }
|
||||
|
||||
/// edge_* - Provide iterators for accessing outgoing edges. Some outgoing
|
||||
/// edges may be null.
|
||||
typedef std::vector<DSNodeHandle>::iterator edge_iterator;
|
||||
typedef std::vector<DSNodeHandle>::const_iterator const_edge_iterator;
|
||||
edge_iterator edge_begin() { return Links.begin(); }
|
||||
edge_iterator edge_end() { return Links.end(); }
|
||||
const_edge_iterator edge_begin() const { return Links.begin(); }
|
||||
const_edge_iterator edge_end() const { return Links.end(); }
|
||||
|
||||
|
||||
/// mergeTypeInfo - This method merges the specified type into the current
|
||||
/// node at the specified offset. This may update the current node's type
|
||||
/// record if this gives more information to the node, it may do nothing to
|
||||
/// the node if this information is already known, or it may merge the node
|
||||
/// completely (and return true) if the information is incompatible with what
|
||||
/// is already known.
|
||||
///
|
||||
/// This method returns true if the node is completely folded, otherwise
|
||||
/// false.
|
||||
///
|
||||
bool mergeTypeInfo(const Type *Ty, unsigned Offset,
|
||||
bool FoldIfIncompatible = true);
|
||||
|
||||
/// foldNodeCompletely - If we determine that this node has some funny
|
||||
/// behavior happening to it that we cannot represent, we fold it down to a
|
||||
/// single, completely pessimistic, node. This node is represented as a
|
||||
/// single byte with a single TypeEntry of "void" with isArray = true.
|
||||
///
|
||||
void foldNodeCompletely();
|
||||
|
||||
/// isNodeCompletelyFolded - Return true if this node has been completely
|
||||
/// folded down to something that can never be expanded, effectively losing
|
||||
/// all of the field sensitivity that may be present in the node.
|
||||
///
|
||||
bool isNodeCompletelyFolded() const;
|
||||
|
||||
/// setLink - Set the link at the specified offset to the specified
|
||||
/// NodeHandle, replacing what was there. It is uncommon to use this method,
|
||||
/// instead one of the higher level methods should be used, below.
|
||||
///
|
||||
void setLink(unsigned Offset, const DSNodeHandle &NH) {
|
||||
assert((Offset & ((1 << DS::PointerShift)-1)) == 0 &&
|
||||
"Pointer offset not aligned correctly!");
|
||||
unsigned Index = Offset >> DS::PointerShift;
|
||||
assert(Index < Links.size() && "Link index is out of range!");
|
||||
Links[Index] = NH;
|
||||
}
|
||||
|
||||
/// getPointerSize - Return the size of a pointer for the current target.
|
||||
///
|
||||
unsigned getPointerSize() const { return DS::PointerSize; }
|
||||
|
||||
/// addEdgeTo - Add an edge from the current node to the specified node. This
|
||||
/// can cause merging of nodes in the graph.
|
||||
///
|
||||
void addEdgeTo(unsigned Offset, const DSNodeHandle &NH);
|
||||
|
||||
/// mergeWith - Merge this node and the specified node, moving all links to
|
||||
/// and from the argument node into the current node, deleting the node
|
||||
/// argument. Offset indicates what offset the specified node is to be merged
|
||||
/// into the current node.
|
||||
///
|
||||
/// The specified node may be a null pointer (in which case, nothing happens).
|
||||
///
|
||||
void mergeWith(const DSNodeHandle &NH, unsigned Offset);
|
||||
|
||||
/// addGlobal - Add an entry for a global value to the Globals list. This
|
||||
/// also marks the node with the 'G' flag if it does not already have it.
|
||||
///
|
||||
void addGlobal(GlobalValue *GV);
|
||||
|
||||
/// removeGlobal - Remove the specified global that is explicitly in the
|
||||
/// globals list.
|
||||
void removeGlobal(GlobalValue *GV);
|
||||
|
||||
void mergeGlobals(const std::vector<GlobalValue*> &RHS);
|
||||
void clearGlobals() { std::vector<GlobalValue*>().swap(Globals); }
|
||||
|
||||
/// getGlobalsList - Return the set of global leaders that are represented by
|
||||
/// this node. Note that globals that are in this equivalence class but are
|
||||
/// not leaders are not returned: for that, use addFullGlobalsList().
|
||||
const std::vector<GlobalValue*> &getGlobalsList() const { return Globals; }
|
||||
|
||||
/// addFullGlobalsList - Compute the full set of global values that are
|
||||
/// represented by this node. Unlike getGlobalsList(), this requires fair
|
||||
/// amount of work to compute, so don't treat this method call as free.
|
||||
void addFullGlobalsList(std::vector<GlobalValue*> &List) const;
|
||||
|
||||
/// addFullFunctionList - Identical to addFullGlobalsList, but only return the
|
||||
/// functions in the full list.
|
||||
void addFullFunctionList(std::vector<Function*> &List) const;
|
||||
|
||||
/// globals_iterator/begin/end - Provide iteration methods over the global
|
||||
/// value leaders set that is merged into this node. Like the getGlobalsList
|
||||
/// method, these iterators do not return globals that are part of the
|
||||
/// equivalence classes for globals in this node, but aren't leaders.
|
||||
typedef std::vector<GlobalValue*>::const_iterator globals_iterator;
|
||||
globals_iterator globals_begin() const { return Globals.begin(); }
|
||||
globals_iterator globals_end() const { return Globals.end(); }
|
||||
|
||||
|
||||
/// maskNodeTypes - Apply a mask to the node types bitfield.
|
||||
///
|
||||
void maskNodeTypes(unsigned Mask) {
|
||||
NodeType &= Mask;
|
||||
}
|
||||
|
||||
void mergeNodeFlags(unsigned RHS) {
|
||||
NodeType |= RHS;
|
||||
}
|
||||
|
||||
/// getNodeFlags - Return all of the flags set on the node. If the DEAD flag
|
||||
/// is set, hide it from the caller.
|
||||
///
|
||||
unsigned getNodeFlags() const { return NodeType & ~DEAD; }
|
||||
|
||||
bool isAllocaNode() const { return NodeType & AllocaNode; }
|
||||
bool isHeapNode() const { return NodeType & HeapNode; }
|
||||
bool isGlobalNode() const { return NodeType & GlobalNode; }
|
||||
bool isUnknownNode() const { return NodeType & UnknownNode; }
|
||||
|
||||
bool isModified() const { return NodeType & Modified; }
|
||||
bool isRead() const { return NodeType & Read; }
|
||||
|
||||
bool isIncomplete() const { return NodeType & Incomplete; }
|
||||
bool isComplete() const { return !isIncomplete(); }
|
||||
bool isDeadNode() const { return NodeType & DEAD; }
|
||||
|
||||
DSNode *setAllocaNodeMarker() { NodeType |= AllocaNode; return this; }
|
||||
DSNode *setHeapNodeMarker() { NodeType |= HeapNode; return this; }
|
||||
DSNode *setGlobalNodeMarker() { NodeType |= GlobalNode; return this; }
|
||||
DSNode *setUnknownNodeMarker() { NodeType |= UnknownNode; return this; }
|
||||
|
||||
DSNode *setIncompleteMarker() { NodeType |= Incomplete; return this; }
|
||||
DSNode *setModifiedMarker() { NodeType |= Modified; return this; }
|
||||
DSNode *setReadMarker() { NodeType |= Read; return this; }
|
||||
DSNode *setArrayMarker() { NodeType |= Array; return this; }
|
||||
|
||||
void makeNodeDead() {
|
||||
Globals.clear();
|
||||
assert(hasNoReferrers() && "Dead node shouldn't have refs!");
|
||||
NodeType = DEAD;
|
||||
}
|
||||
|
||||
/// forwardNode - Mark this node as being obsolete, and all references to it
|
||||
/// should be forwarded to the specified node and offset.
|
||||
///
|
||||
void forwardNode(DSNode *To, unsigned Offset);
|
||||
|
||||
void print(OStream &O, const DSGraph *G) const {
|
||||
if (O.stream()) print(*O.stream(), G);
|
||||
}
|
||||
void print(std::ostream &O, const DSGraph *G) const;
|
||||
void dump() const;
|
||||
|
||||
void assertOK() const;
|
||||
|
||||
void dropAllReferences() {
|
||||
Links.clear();
|
||||
if (isForwarding())
|
||||
ForwardNH.setTo(0, 0);
|
||||
}
|
||||
|
||||
/// remapLinks - Change all of the Links in the current node according to the
|
||||
/// specified mapping.
|
||||
///
|
||||
void remapLinks(hash_map<const DSNode*, DSNodeHandle> &OldNodeMap);
|
||||
|
||||
/// markReachableNodes - This method recursively traverses the specified
|
||||
/// DSNodes, marking any nodes which are reachable. All reachable nodes it
|
||||
/// adds to the set, which allows it to only traverse visited nodes once.
|
||||
///
|
||||
void markReachableNodes(hash_set<const DSNode*> &ReachableNodes) const;
|
||||
|
||||
private:
|
||||
friend class DSNodeHandle;
|
||||
|
||||
// static mergeNodes - Helper for mergeWith()
|
||||
static void MergeNodes(DSNodeHandle& CurNodeH, DSNodeHandle& NH);
|
||||
};
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Define the ilist_traits specialization for the DSGraph ilist.
|
||||
//
|
||||
template<>
|
||||
struct ilist_traits<DSNode> {
|
||||
static DSNode *getPrev(const DSNode *N) { return N->Prev; }
|
||||
static DSNode *getNext(const DSNode *N) { return N->Next; }
|
||||
|
||||
static void setPrev(DSNode *N, DSNode *Prev) { N->Prev = Prev; }
|
||||
static void setNext(DSNode *N, DSNode *Next) { N->Next = Next; }
|
||||
|
||||
static DSNode *createSentinel() { return new DSNode(0,0); }
|
||||
static void destroySentinel(DSNode *N) { delete N; }
|
||||
//static DSNode *createNode(const DSNode &V) { return new DSNode(V); }
|
||||
|
||||
|
||||
void addNodeToList(DSNode *NTy) {}
|
||||
void removeNodeFromList(DSNode *NTy) {}
|
||||
void transferNodesFromList(iplist<DSNode, ilist_traits> &L2,
|
||||
ilist_iterator<DSNode> first,
|
||||
ilist_iterator<DSNode> last) {}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct ilist_traits<const DSNode> : public ilist_traits<DSNode> {};
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Define inline DSNodeHandle functions that depend on the definition of DSNode
|
||||
//
|
||||
inline DSNode *DSNodeHandle::getNode() const {
|
||||
// Disabling this assertion because it is failing on a "magic" struct
|
||||
// in named (from bind). The fourth field is an array of length 0,
|
||||
// presumably used to create struct instances of different sizes.
|
||||
// In a variable length struct, Offset could exceed Size when getNode()
|
||||
// is called before such a node is folded. In this case, the DS Analysis now
|
||||
// correctly folds this node after calling getNode.
|
||||
/* assert((!N ||
|
||||
N->isNodeCompletelyFolded() ||
|
||||
(N->Size == 0 && Offset == 0) ||
|
||||
(int(Offset) >= 0 && Offset < N->Size) ||
|
||||
(int(Offset) < 0 && -int(Offset) < int(N->Size)) ||
|
||||
N->isForwarding()) && "Node handle offset out of range!");
|
||||
*/
|
||||
if (N == 0 || !N->isForwarding())
|
||||
return N;
|
||||
|
||||
return HandleForwarding();
|
||||
}
|
||||
|
||||
inline void DSNodeHandle::setTo(DSNode *n, unsigned NewOffset) const {
|
||||
assert(!n || !n->isForwarding() && "Cannot set node to a forwarded node!");
|
||||
if (N) getNode()->NumReferrers--;
|
||||
N = n;
|
||||
Offset = NewOffset;
|
||||
if (N) {
|
||||
N->NumReferrers++;
|
||||
if (Offset >= N->Size) {
|
||||
assert((Offset == 0 || N->Size == 1) &&
|
||||
"Pointer to non-collapsed node with invalid offset!");
|
||||
Offset = 0;
|
||||
}
|
||||
}
|
||||
assert(!N || ((N->NodeType & DSNode::DEAD) == 0));
|
||||
assert((!N || Offset < N->Size || (N->Size == 0 && Offset == 0) ||
|
||||
N->isForwarding()) && "Node handle offset out of range!");
|
||||
}
|
||||
|
||||
inline bool DSNodeHandle::hasLink(unsigned Num) const {
|
||||
assert(N && "DSNodeHandle does not point to a node yet!");
|
||||
return getNode()->hasLink(Num+Offset);
|
||||
}
|
||||
|
||||
|
||||
/// getLink - Treat this current node pointer as a pointer to a structure of
|
||||
/// some sort. This method will return the pointer a mem[this+Num]
|
||||
///
|
||||
inline const DSNodeHandle &DSNodeHandle::getLink(unsigned Off) const {
|
||||
assert(N && "DSNodeHandle does not point to a node yet!");
|
||||
return getNode()->getLink(Offset+Off);
|
||||
}
|
||||
inline DSNodeHandle &DSNodeHandle::getLink(unsigned Off) {
|
||||
assert(N && "DSNodeHandle does not point to a node yet!");
|
||||
return getNode()->getLink(Off+Offset);
|
||||
}
|
||||
|
||||
inline void DSNodeHandle::setLink(unsigned Off, const DSNodeHandle &NH) {
|
||||
assert(N && "DSNodeHandle does not point to a node yet!");
|
||||
getNode()->setLink(Off+Offset, NH);
|
||||
}
|
||||
|
||||
/// addEdgeTo - Add an edge from the current node to the specified node. This
|
||||
/// can cause merging of nodes in the graph.
|
||||
///
|
||||
inline void DSNodeHandle::addEdgeTo(unsigned Off, const DSNodeHandle &Node) {
|
||||
assert(N && "DSNodeHandle does not point to a node yet!");
|
||||
getNode()->addEdgeTo(Off+Offset, Node);
|
||||
}
|
||||
|
||||
/// mergeWith - Merge the logical node pointed to by 'this' with the node
|
||||
/// pointed to by 'N'.
|
||||
///
|
||||
inline void DSNodeHandle::mergeWith(const DSNodeHandle &Node) const {
|
||||
if (!isNull())
|
||||
getNode()->mergeWith(Node, Offset);
|
||||
else { // No node to merge with, so just point to Node
|
||||
Offset = 0;
|
||||
DSNode *NN = Node.getNode();
|
||||
setTo(NN, Node.getOffset());
|
||||
}
|
||||
}
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
#endif
|
@ -1,338 +0,0 @@
|
||||
//===- DSSupport.h - Support for datastructure graphs -----------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Support for graph nodes, call sites, and types.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_ANALYSIS_DSSUPPORT_H
|
||||
#define LLVM_ANALYSIS_DSSUPPORT_H
|
||||
|
||||
#include <functional>
|
||||
#include "llvm/ADT/hash_map"
|
||||
#include "llvm/ADT/hash_set"
|
||||
#include "llvm/Support/CallSite.h"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class Function;
|
||||
class CallInst;
|
||||
class Value;
|
||||
class GlobalValue;
|
||||
class Type;
|
||||
|
||||
class DSNode; // Each node in the graph
|
||||
class DSGraph; // A graph for a function
|
||||
class ReachabilityCloner;
|
||||
|
||||
namespace DS { // FIXME: After the paper, this should get cleaned up
|
||||
enum { PointerShift = 2, // 64bit ptrs = 3, 32 bit ptrs = 2
|
||||
PointerSize = 1 << PointerShift
|
||||
};
|
||||
|
||||
/// isPointerType - Return true if this first class type is big enough to hold
|
||||
/// a pointer.
|
||||
///
|
||||
bool isPointerType(const Type *Ty);
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
/// DSNodeHandle - Implement a "handle" to a data structure node that takes care
|
||||
/// of all of the add/un'refing of the node to prevent the backpointers in the
|
||||
/// graph from getting out of date. This class represents a "pointer" in the
|
||||
/// graph, whose destination is an indexed offset into a node.
|
||||
///
|
||||
/// Note: some functions that are marked as inline in DSNodeHandle are actually
|
||||
/// defined in DSNode.h because they need knowledge of DSNode operation. Putting
|
||||
/// them in a CPP file wouldn't help making them inlined and keeping DSNode and
|
||||
/// DSNodeHandle (and friends) in one file complicates things.
|
||||
///
|
||||
class DSNodeHandle {
|
||||
mutable DSNode *N;
|
||||
mutable unsigned Offset;
|
||||
void operator==(const DSNode *N); // DISALLOW, use to promote N to nodehandle
|
||||
public:
|
||||
// Allow construction, destruction, and assignment...
|
||||
DSNodeHandle(DSNode *n = 0, unsigned offs = 0) : N(0), Offset(0) {
|
||||
setTo(n, offs);
|
||||
}
|
||||
DSNodeHandle(const DSNodeHandle &H) : N(0), Offset(0) {
|
||||
DSNode *NN = H.getNode();
|
||||
setTo(NN, H.Offset); // Must read offset AFTER the getNode()
|
||||
}
|
||||
~DSNodeHandle() { setTo(0, 0); }
|
||||
DSNodeHandle &operator=(const DSNodeHandle &H) {
|
||||
if (&H == this) return *this; // Don't set offset to 0 if self assigning.
|
||||
DSNode *NN = H.getNode(); // Call getNode() before .Offset
|
||||
setTo(NN, H.Offset);
|
||||
return *this;
|
||||
}
|
||||
|
||||
bool operator<(const DSNodeHandle &H) const { // Allow sorting
|
||||
return getNode() < H.getNode() || (N == H.N && Offset < H.Offset);
|
||||
}
|
||||
bool operator>(const DSNodeHandle &H) const { return H < *this; }
|
||||
bool operator==(const DSNodeHandle &H) const { // Allow comparison
|
||||
// getNode can change the offset, so we must call getNode() first.
|
||||
return getNode() == H.getNode() && Offset == H.Offset;
|
||||
}
|
||||
bool operator!=(const DSNodeHandle &H) const { return !operator==(H); }
|
||||
|
||||
inline void swap(DSNodeHandle &NH) {
|
||||
std::swap(Offset, NH.Offset);
|
||||
std::swap(N, NH.N);
|
||||
}
|
||||
|
||||
/// isNull - Check to see if getNode() == 0, without going through the trouble
|
||||
/// of checking to see if we are forwarding...
|
||||
///
|
||||
bool isNull() const { return N == 0; }
|
||||
|
||||
// Allow explicit conversion to DSNode...
|
||||
inline DSNode *getNode() const; // Defined inline in DSNode.h
|
||||
unsigned getOffset() const {
|
||||
assert(!isForwarding() && "This is a forwarding NH, call getNode() first!");
|
||||
return Offset;
|
||||
}
|
||||
|
||||
void setOffset(unsigned O) {
|
||||
assert(!isForwarding() && "This is a forwarding NH, call getNode() first!");
|
||||
//assert((!N || Offset < N->Size || (N->Size == 0 && Offset == 0) ||
|
||||
// !N->ForwardNH.isNull()) && "Node handle offset out of range!");
|
||||
//assert((!N || O < N->Size || (N->Size == 0 && O == 0) ||
|
||||
// !N->ForwardNH.isNull()) && "Node handle offset out of range!");
|
||||
Offset = O;
|
||||
}
|
||||
|
||||
inline void setTo(DSNode *N, unsigned O) const; // Defined inline in DSNode.h
|
||||
|
||||
void addEdgeTo(unsigned LinkNo, const DSNodeHandle &N);
|
||||
void addEdgeTo(const DSNodeHandle &N) { addEdgeTo(0, N); }
|
||||
|
||||
/// mergeWith - Merge the logical node pointed to by 'this' with the node
|
||||
/// pointed to by 'N'.
|
||||
///
|
||||
void mergeWith(const DSNodeHandle &N) const;
|
||||
|
||||
/// hasLink - Return true if there is a link at the specified offset...
|
||||
///
|
||||
inline bool hasLink(unsigned Num) const;
|
||||
|
||||
/// getLink - Treat this current node pointer as a pointer to a structure of
|
||||
/// some sort. This method will return the pointer a mem[this+Num]
|
||||
///
|
||||
inline const DSNodeHandle &getLink(unsigned Num) const;
|
||||
inline DSNodeHandle &getLink(unsigned Num);
|
||||
|
||||
inline void setLink(unsigned Num, const DSNodeHandle &NH);
|
||||
private:
|
||||
DSNode *HandleForwarding() const;
|
||||
|
||||
/// isForwarding - Return true if this NodeHandle is forwarding to another
|
||||
/// one.
|
||||
bool isForwarding() const;
|
||||
};
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
namespace std {
|
||||
template<>
|
||||
inline void swap<llvm::DSNodeHandle>(llvm::DSNodeHandle &NH1, llvm::DSNodeHandle &NH2) { NH1.swap(NH2); }
|
||||
}
|
||||
|
||||
namespace HASH_NAMESPACE {
|
||||
// Provide a hash function for arbitrary pointers...
|
||||
template <> struct hash<llvm::DSNodeHandle> {
|
||||
inline size_t operator()(const llvm::DSNodeHandle &Val) const {
|
||||
return hash<void*>()(Val.getNode()) ^ Val.getOffset();
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
namespace llvm {
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
/// DSCallSite - Representation of a call site via its call instruction,
|
||||
/// the DSNode handle for the callee function (or function pointer), and
|
||||
/// the DSNode handles for the function arguments.
|
||||
///
|
||||
class DSCallSite {
|
||||
CallSite Site; // Actual call site
|
||||
Function *CalleeF; // The function called (direct call)
|
||||
DSNodeHandle CalleeN; // The function node called (indirect call)
|
||||
DSNodeHandle RetVal; // Returned value
|
||||
std::vector<DSNodeHandle> CallArgs;// The pointer arguments
|
||||
|
||||
static void InitNH(DSNodeHandle &NH, const DSNodeHandle &Src,
|
||||
const hash_map<const DSNode*, DSNode*> &NodeMap) {
|
||||
if (DSNode *N = Src.getNode()) {
|
||||
hash_map<const DSNode*, DSNode*>::const_iterator I = NodeMap.find(N);
|
||||
assert(I != NodeMap.end() && "Node not in mapping!");
|
||||
NH.setTo(I->second, Src.getOffset());
|
||||
}
|
||||
}
|
||||
|
||||
static void InitNH(DSNodeHandle &NH, const DSNodeHandle &Src,
|
||||
const hash_map<const DSNode*, DSNodeHandle> &NodeMap) {
|
||||
if (DSNode *N = Src.getNode()) {
|
||||
hash_map<const DSNode*, DSNodeHandle>::const_iterator I = NodeMap.find(N);
|
||||
assert(I != NodeMap.end() && "Node not in mapping!");
|
||||
|
||||
DSNode *NN = I->second.getNode(); // Call getNode before getOffset()
|
||||
NH.setTo(NN, Src.getOffset()+I->second.getOffset());
|
||||
}
|
||||
}
|
||||
|
||||
static void InitNH(DSNodeHandle &NH, const DSNodeHandle &Src,
|
||||
ReachabilityCloner &RC);
|
||||
|
||||
|
||||
DSCallSite(); // DO NOT IMPLEMENT
|
||||
public:
|
||||
/// Constructor. Note - This ctor destroys the argument vector passed in. On
|
||||
/// exit, the argument vector is empty.
|
||||
///
|
||||
DSCallSite(CallSite CS, const DSNodeHandle &rv, DSNode *Callee,
|
||||
std::vector<DSNodeHandle> &Args)
|
||||
: Site(CS), CalleeF(0), CalleeN(Callee), RetVal(rv) {
|
||||
assert(Callee && "Null callee node specified for call site!");
|
||||
Args.swap(CallArgs);
|
||||
}
|
||||
DSCallSite(CallSite CS, const DSNodeHandle &rv, Function *Callee,
|
||||
std::vector<DSNodeHandle> &Args)
|
||||
: Site(CS), CalleeF(Callee), RetVal(rv) {
|
||||
assert(Callee && "Null callee function specified for call site!");
|
||||
Args.swap(CallArgs);
|
||||
}
|
||||
|
||||
DSCallSite(const DSCallSite &DSCS) // Simple copy ctor
|
||||
: Site(DSCS.Site), CalleeF(DSCS.CalleeF), CalleeN(DSCS.CalleeN),
|
||||
RetVal(DSCS.RetVal), CallArgs(DSCS.CallArgs) {}
|
||||
|
||||
/// Mapping copy constructor - This constructor takes a preexisting call site
|
||||
/// to copy plus a map that specifies how the links should be transformed.
|
||||
/// This is useful when moving a call site from one graph to another.
|
||||
///
|
||||
template<typename MapTy>
|
||||
DSCallSite(const DSCallSite &FromCall, MapTy &NodeMap) {
|
||||
Site = FromCall.Site;
|
||||
InitNH(RetVal, FromCall.RetVal, NodeMap);
|
||||
InitNH(CalleeN, FromCall.CalleeN, NodeMap);
|
||||
CalleeF = FromCall.CalleeF;
|
||||
|
||||
CallArgs.resize(FromCall.CallArgs.size());
|
||||
for (unsigned i = 0, e = FromCall.CallArgs.size(); i != e; ++i)
|
||||
InitNH(CallArgs[i], FromCall.CallArgs[i], NodeMap);
|
||||
}
|
||||
|
||||
const DSCallSite &operator=(const DSCallSite &RHS) {
|
||||
Site = RHS.Site;
|
||||
CalleeF = RHS.CalleeF;
|
||||
CalleeN = RHS.CalleeN;
|
||||
RetVal = RHS.RetVal;
|
||||
CallArgs = RHS.CallArgs;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// isDirectCall - Return true if this call site is a direct call of the
|
||||
/// function specified by getCalleeFunc. If not, it is an indirect call to
|
||||
/// the node specified by getCalleeNode.
|
||||
///
|
||||
bool isDirectCall() const { return CalleeF != 0; }
|
||||
bool isIndirectCall() const { return !isDirectCall(); }
|
||||
|
||||
|
||||
// Accessor functions...
|
||||
Function &getCaller() const;
|
||||
CallSite getCallSite() const { return Site; }
|
||||
DSNodeHandle &getRetVal() { return RetVal; }
|
||||
const DSNodeHandle &getRetVal() const { return RetVal; }
|
||||
|
||||
DSNode *getCalleeNode() const {
|
||||
assert(!CalleeF && CalleeN.getNode()); return CalleeN.getNode();
|
||||
}
|
||||
Function *getCalleeFunc() const {
|
||||
assert(!CalleeN.getNode() && CalleeF); return CalleeF;
|
||||
}
|
||||
|
||||
unsigned getNumPtrArgs() const { return CallArgs.size(); }
|
||||
|
||||
DSNodeHandle &getPtrArg(unsigned i) {
|
||||
assert(i < CallArgs.size() && "Argument to getPtrArgNode is out of range!");
|
||||
return CallArgs[i];
|
||||
}
|
||||
const DSNodeHandle &getPtrArg(unsigned i) const {
|
||||
assert(i < CallArgs.size() && "Argument to getPtrArgNode is out of range!");
|
||||
return CallArgs[i];
|
||||
}
|
||||
|
||||
void addPtrArg(const DSNodeHandle &NH) {
|
||||
CallArgs.push_back(NH);
|
||||
}
|
||||
|
||||
void swap(DSCallSite &CS) {
|
||||
if (this != &CS) {
|
||||
std::swap(Site, CS.Site);
|
||||
std::swap(RetVal, CS.RetVal);
|
||||
std::swap(CalleeN, CS.CalleeN);
|
||||
std::swap(CalleeF, CS.CalleeF);
|
||||
std::swap(CallArgs, CS.CallArgs);
|
||||
}
|
||||
}
|
||||
|
||||
/// mergeWith - Merge the return value and parameters of the these two call
|
||||
/// sites.
|
||||
///
|
||||
void mergeWith(DSCallSite &CS) {
|
||||
getRetVal().mergeWith(CS.getRetVal());
|
||||
unsigned MinArgs = getNumPtrArgs();
|
||||
if (CS.getNumPtrArgs() < MinArgs) MinArgs = CS.getNumPtrArgs();
|
||||
|
||||
for (unsigned a = 0; a != MinArgs; ++a)
|
||||
getPtrArg(a).mergeWith(CS.getPtrArg(a));
|
||||
|
||||
for (unsigned a = MinArgs, e = CS.getNumPtrArgs(); a != e; ++a)
|
||||
CallArgs.push_back(CS.getPtrArg(a));
|
||||
}
|
||||
|
||||
/// markReachableNodes - This method recursively traverses the specified
|
||||
/// DSNodes, marking any nodes which are reachable. All reachable nodes it
|
||||
/// adds to the set, which allows it to only traverse visited nodes once.
|
||||
///
|
||||
void markReachableNodes(hash_set<const DSNode*> &Nodes) const;
|
||||
|
||||
bool operator<(const DSCallSite &CS) const {
|
||||
if (isDirectCall()) { // This must sort by callee first!
|
||||
if (CS.isIndirectCall()) return true;
|
||||
if (CalleeF < CS.CalleeF) return true;
|
||||
if (CalleeF > CS.CalleeF) return false;
|
||||
} else {
|
||||
if (CS.isDirectCall()) return false;
|
||||
if (CalleeN < CS.CalleeN) return true;
|
||||
if (CalleeN > CS.CalleeN) return false;
|
||||
}
|
||||
if (RetVal < CS.RetVal) return true;
|
||||
if (RetVal > CS.RetVal) return false;
|
||||
return CallArgs < CS.CallArgs;
|
||||
}
|
||||
|
||||
bool operator==(const DSCallSite &CS) const {
|
||||
return CalleeF == CS.CalleeF && CalleeN == CS.CalleeN &&
|
||||
RetVal == CS.RetVal && CallArgs == CS.CallArgs;
|
||||
}
|
||||
};
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
namespace std {
|
||||
template<>
|
||||
inline void swap<llvm::DSCallSite>(llvm::DSCallSite &CS1,
|
||||
llvm::DSCallSite &CS2) { CS1.swap(CS2); }
|
||||
}
|
||||
#endif
|
@ -1,441 +0,0 @@
|
||||
//===- DataStructure.h - Build data structure graphs ------------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Implement the LLVM data structure analysis library.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_ANALYSIS_DATA_STRUCTURE_H
|
||||
#define LLVM_ANALYSIS_DATA_STRUCTURE_H
|
||||
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/Target/TargetData.h"
|
||||
#include "llvm/Support/CallSite.h"
|
||||
#include "llvm/ADT/hash_map"
|
||||
#include "llvm/ADT/hash_set"
|
||||
#include "llvm/ADT/EquivalenceClasses.h"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class Type;
|
||||
class Instruction;
|
||||
class GlobalValue;
|
||||
class DSGraph;
|
||||
class DSCallSite;
|
||||
class DSNode;
|
||||
class DSNodeHandle;
|
||||
|
||||
FunctionPass *createDataStructureStatsPass();
|
||||
FunctionPass *createDataStructureGraphCheckerPass();
|
||||
|
||||
|
||||
// FIXME: move this stuff to a private header
|
||||
namespace DataStructureAnalysis {
|
||||
/// isPointerType - Return true if this first class type is big enough to hold
|
||||
/// a pointer.
|
||||
///
|
||||
bool isPointerType(const Type *Ty);
|
||||
}
|
||||
|
||||
|
||||
// LocalDataStructures - The analysis that computes the local data structure
|
||||
// graphs for all of the functions in the program.
|
||||
//
|
||||
// FIXME: This should be a Function pass that can be USED by a Pass, and would
|
||||
// be automatically preserved. Until we can do that, this is a Pass.
|
||||
//
|
||||
class LocalDataStructures : public ModulePass {
|
||||
// DSInfo, one graph for each function
|
||||
hash_map<Function*, DSGraph*> DSInfo;
|
||||
DSGraph *GlobalsGraph;
|
||||
|
||||
/// GlobalECs - The equivalence classes for each global value that is merged
|
||||
/// with other global values in the DSGraphs.
|
||||
EquivalenceClasses<GlobalValue*> GlobalECs;
|
||||
public:
|
||||
~LocalDataStructures() { releaseMemory(); }
|
||||
|
||||
virtual bool runOnModule(Module &M);
|
||||
|
||||
bool hasGraph(const Function &F) const {
|
||||
return DSInfo.find(const_cast<Function*>(&F)) != DSInfo.end();
|
||||
}
|
||||
|
||||
/// getDSGraph - Return the data structure graph for the specified function.
|
||||
///
|
||||
DSGraph &getDSGraph(const Function &F) const {
|
||||
hash_map<Function*, DSGraph*>::const_iterator I =
|
||||
DSInfo.find(const_cast<Function*>(&F));
|
||||
assert(I != DSInfo.end() && "Function not in module!");
|
||||
return *I->second;
|
||||
}
|
||||
|
||||
DSGraph &getGlobalsGraph() const { return *GlobalsGraph; }
|
||||
|
||||
EquivalenceClasses<GlobalValue*> &getGlobalECs() { return GlobalECs; }
|
||||
|
||||
/// print - Print out the analysis results...
|
||||
///
|
||||
void print(std::ostream &O, const Module *M) const;
|
||||
|
||||
/// releaseMemory - if the pass pipeline is done with this pass, we can
|
||||
/// release our memory...
|
||||
///
|
||||
virtual void releaseMemory();
|
||||
|
||||
/// getAnalysisUsage - This obviously provides a data structure graph.
|
||||
///
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.setPreservesAll();
|
||||
AU.addRequired<TargetData>();
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/// BUDataStructures - The analysis that computes the interprocedurally closed
|
||||
/// data structure graphs for all of the functions in the program. This pass
|
||||
/// only performs a "Bottom Up" propagation (hence the name).
|
||||
///
|
||||
class BUDataStructures : public ModulePass {
|
||||
protected:
|
||||
// DSInfo, one graph for each function
|
||||
hash_map<Function*, DSGraph*> DSInfo;
|
||||
DSGraph *GlobalsGraph;
|
||||
std::set<std::pair<Instruction*, Function*> > ActualCallees;
|
||||
|
||||
// This map is only maintained during construction of BU Graphs
|
||||
std::map<std::vector<Function*>,
|
||||
std::pair<DSGraph*, std::vector<DSNodeHandle> > > *IndCallGraphMap;
|
||||
|
||||
/// GlobalECs - The equivalence classes for each global value that is merged
|
||||
/// with other global values in the DSGraphs.
|
||||
EquivalenceClasses<GlobalValue*> GlobalECs;
|
||||
|
||||
std::map<CallSite, std::vector<Function*> > AlreadyInlined;
|
||||
|
||||
public:
|
||||
~BUDataStructures() { releaseMyMemory(); }
|
||||
|
||||
virtual bool runOnModule(Module &M);
|
||||
|
||||
bool hasGraph(const Function &F) const {
|
||||
return DSInfo.find(const_cast<Function*>(&F)) != DSInfo.end();
|
||||
}
|
||||
|
||||
/// getDSGraph - Return the data structure graph for the specified function.
|
||||
///
|
||||
DSGraph &getDSGraph(const Function &F) const {
|
||||
hash_map<Function*, DSGraph*>::const_iterator I =
|
||||
DSInfo.find(const_cast<Function*>(&F));
|
||||
if (I != DSInfo.end())
|
||||
return *I->second;
|
||||
return const_cast<BUDataStructures*>(this)->
|
||||
CreateGraphForExternalFunction(F);
|
||||
}
|
||||
|
||||
/// DSGraphExists - Is the DSGraph computed for this function?
|
||||
///
|
||||
bool doneDSGraph(const Function *F) const {
|
||||
return (DSInfo.find(const_cast<Function*>(F)) != DSInfo.end());
|
||||
}
|
||||
|
||||
DSGraph &getGlobalsGraph() const { return *GlobalsGraph; }
|
||||
|
||||
EquivalenceClasses<GlobalValue*> &getGlobalECs() { return GlobalECs; }
|
||||
|
||||
DSGraph &CreateGraphForExternalFunction(const Function &F);
|
||||
|
||||
/// deleteValue/copyValue - Interfaces to update the DSGraphs in the program.
|
||||
/// These correspond to the interfaces defined in the AliasAnalysis class.
|
||||
void deleteValue(Value *V);
|
||||
void copyValue(Value *From, Value *To);
|
||||
|
||||
/// print - Print out the analysis results...
|
||||
///
|
||||
void print(std::ostream &O, const Module *M) const;
|
||||
|
||||
// FIXME: Once the pass manager is straightened out, rename this to
|
||||
// releaseMemory.
|
||||
void releaseMyMemory();
|
||||
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.setPreservesAll();
|
||||
AU.addRequired<LocalDataStructures>();
|
||||
}
|
||||
|
||||
typedef std::set<std::pair<Instruction*, Function*> > ActualCalleesTy;
|
||||
const ActualCalleesTy &getActualCallees() const {
|
||||
return ActualCallees;
|
||||
}
|
||||
|
||||
typedef ActualCalleesTy::const_iterator callee_iterator;
|
||||
callee_iterator callee_begin(Instruction *I) const {
|
||||
return ActualCallees.lower_bound(std::pair<Instruction*,Function*>(I, 0));
|
||||
}
|
||||
|
||||
callee_iterator callee_end(Instruction *I) const {
|
||||
I = (Instruction*)((char*)I + 1);
|
||||
return ActualCallees.lower_bound(std::pair<Instruction*,Function*>(I, 0));
|
||||
}
|
||||
|
||||
private:
|
||||
void calculateGraph(DSGraph &G);
|
||||
|
||||
DSGraph &getOrCreateGraph(Function *F);
|
||||
|
||||
unsigned calculateGraphs(Function *F, std::vector<Function*> &Stack,
|
||||
unsigned &NextID,
|
||||
hash_map<Function*, unsigned> &ValMap);
|
||||
};
|
||||
|
||||
|
||||
/// TDDataStructures - Analysis that computes new data structure graphs
|
||||
/// for each function using the closed graphs for the callers computed
|
||||
/// by the bottom-up pass.
|
||||
///
|
||||
class TDDataStructures : public ModulePass {
|
||||
// DSInfo, one graph for each function
|
||||
hash_map<Function*, DSGraph*> DSInfo;
|
||||
hash_set<Function*> ArgsRemainIncomplete;
|
||||
DSGraph *GlobalsGraph;
|
||||
BUDataStructures *BUInfo;
|
||||
|
||||
/// GlobalECs - The equivalence classes for each global value that is merged
|
||||
/// with other global values in the DSGraphs.
|
||||
EquivalenceClasses<GlobalValue*> GlobalECs;
|
||||
|
||||
/// CallerCallEdges - For a particular graph, we keep a list of these records
|
||||
/// which indicates which graphs call this function and from where.
|
||||
struct CallerCallEdge {
|
||||
DSGraph *CallerGraph; // The graph of the caller function.
|
||||
const DSCallSite *CS; // The actual call site.
|
||||
Function *CalledFunction; // The actual function being called.
|
||||
|
||||
CallerCallEdge(DSGraph *G, const DSCallSite *cs, Function *CF)
|
||||
: CallerGraph(G), CS(cs), CalledFunction(CF) {}
|
||||
|
||||
bool operator<(const CallerCallEdge &RHS) const {
|
||||
return CallerGraph < RHS.CallerGraph ||
|
||||
(CallerGraph == RHS.CallerGraph && CS < RHS.CS);
|
||||
}
|
||||
};
|
||||
|
||||
std::map<DSGraph*, std::vector<CallerCallEdge> > CallerEdges;
|
||||
|
||||
|
||||
// IndCallMap - We memoize the results of indirect call inlining operations
|
||||
// that have multiple targets here to avoid N*M inlining. The key to the map
|
||||
// is a sorted set of callee functions, the value is the DSGraph that holds
|
||||
// all of the caller graphs merged together, and the DSCallSite to merge with
|
||||
// the arguments for each function.
|
||||
std::map<std::vector<Function*>, DSGraph*> IndCallMap;
|
||||
|
||||
public:
|
||||
~TDDataStructures() { releaseMyMemory(); }
|
||||
|
||||
virtual bool runOnModule(Module &M);
|
||||
|
||||
bool hasGraph(const Function &F) const {
|
||||
return DSInfo.find(const_cast<Function*>(&F)) != DSInfo.end();
|
||||
}
|
||||
|
||||
/// getDSGraph - Return the data structure graph for the specified function.
|
||||
///
|
||||
DSGraph &getDSGraph(const Function &F) const {
|
||||
hash_map<Function*, DSGraph*>::const_iterator I =
|
||||
DSInfo.find(const_cast<Function*>(&F));
|
||||
if (I != DSInfo.end()) return *I->second;
|
||||
return const_cast<TDDataStructures*>(this)->
|
||||
getOrCreateDSGraph(const_cast<Function&>(F));
|
||||
}
|
||||
|
||||
DSGraph &getGlobalsGraph() const { return *GlobalsGraph; }
|
||||
EquivalenceClasses<GlobalValue*> &getGlobalECs() { return GlobalECs; }
|
||||
|
||||
|
||||
/// deleteValue/copyValue - Interfaces to update the DSGraphs in the program.
|
||||
/// These correspond to the interfaces defined in the AliasAnalysis class.
|
||||
void deleteValue(Value *V);
|
||||
void copyValue(Value *From, Value *To);
|
||||
|
||||
/// print - Print out the analysis results...
|
||||
///
|
||||
void print(std::ostream &O, const Module *M) const;
|
||||
|
||||
/// If the pass pipeline is done with this pass, we can release our memory...
|
||||
///
|
||||
virtual void releaseMyMemory();
|
||||
|
||||
/// getAnalysisUsage - This obviously provides a data structure graph.
|
||||
///
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.setPreservesAll();
|
||||
AU.addRequired<BUDataStructures>();
|
||||
}
|
||||
|
||||
private:
|
||||
void markReachableFunctionsExternallyAccessible(DSNode *N,
|
||||
hash_set<DSNode*> &Visited);
|
||||
|
||||
void InlineCallersIntoGraph(DSGraph &G);
|
||||
DSGraph &getOrCreateDSGraph(Function &F);
|
||||
void ComputePostOrder(Function &F, hash_set<DSGraph*> &Visited,
|
||||
std::vector<DSGraph*> &PostOrder);
|
||||
};
|
||||
|
||||
|
||||
/// CompleteBUDataStructures - This is the exact same as the bottom-up graphs,
|
||||
/// but we use take a completed call graph and inline all indirect callees into
|
||||
/// their callers graphs, making the result more useful for things like pool
|
||||
/// allocation.
|
||||
///
|
||||
struct CompleteBUDataStructures : public BUDataStructures {
|
||||
virtual bool runOnModule(Module &M);
|
||||
|
||||
bool hasGraph(const Function &F) const {
|
||||
return DSInfo.find(const_cast<Function*>(&F)) != DSInfo.end();
|
||||
}
|
||||
|
||||
/// getDSGraph - Return the data structure graph for the specified function.
|
||||
///
|
||||
DSGraph &getDSGraph(const Function &F) const {
|
||||
hash_map<Function*, DSGraph*>::const_iterator I =
|
||||
DSInfo.find(const_cast<Function*>(&F));
|
||||
assert(I != DSInfo.end() && "Function not in module!");
|
||||
return *I->second;
|
||||
}
|
||||
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.setPreservesAll();
|
||||
AU.addRequired<BUDataStructures>();
|
||||
|
||||
// FIXME: TEMPORARY (remove once finalization of indirect call sites in the
|
||||
// globals graph has been implemented in the BU pass)
|
||||
AU.addRequired<TDDataStructures>();
|
||||
}
|
||||
|
||||
/// print - Print out the analysis results...
|
||||
///
|
||||
void print(std::ostream &O, const Module *M) const;
|
||||
|
||||
private:
|
||||
unsigned calculateSCCGraphs(DSGraph &FG, std::vector<DSGraph*> &Stack,
|
||||
unsigned &NextID,
|
||||
hash_map<DSGraph*, unsigned> &ValMap);
|
||||
DSGraph &getOrCreateGraph(Function &F);
|
||||
void processGraph(DSGraph &G);
|
||||
};
|
||||
|
||||
|
||||
/// EquivClassGraphs - This is the same as the complete bottom-up graphs, but
|
||||
/// with functions partitioned into equivalence classes and a single merged
|
||||
/// DS graph for all functions in an equivalence class. After this merging,
|
||||
/// graphs are inlined bottom-up on the SCCs of the final (CBU) call graph.
|
||||
///
|
||||
struct EquivClassGraphs : public ModulePass {
|
||||
CompleteBUDataStructures *CBU;
|
||||
|
||||
DSGraph *GlobalsGraph;
|
||||
|
||||
// DSInfo - one graph for each function.
|
||||
hash_map<const Function*, DSGraph*> DSInfo;
|
||||
|
||||
/// ActualCallees - The actual functions callable from indirect call sites.
|
||||
///
|
||||
std::set<std::pair<Instruction*, Function*> > ActualCallees;
|
||||
|
||||
// Equivalence class where functions that can potentially be called via the
|
||||
// same function pointer are in the same class.
|
||||
EquivalenceClasses<Function*> FuncECs;
|
||||
|
||||
/// OneCalledFunction - For each indirect call, we keep track of one
|
||||
/// target of the call. This is used to find equivalence class called by
|
||||
/// a call site.
|
||||
std::map<DSNode*, Function *> OneCalledFunction;
|
||||
|
||||
/// GlobalECs - The equivalence classes for each global value that is merged
|
||||
/// with other global values in the DSGraphs.
|
||||
EquivalenceClasses<GlobalValue*> GlobalECs;
|
||||
|
||||
public:
|
||||
/// EquivClassGraphs - Computes the equivalence classes and then the
|
||||
/// folded DS graphs for each class.
|
||||
///
|
||||
virtual bool runOnModule(Module &M);
|
||||
|
||||
/// print - Print out the analysis results...
|
||||
///
|
||||
void print(std::ostream &O, const Module *M) const;
|
||||
|
||||
EquivalenceClasses<GlobalValue*> &getGlobalECs() { return GlobalECs; }
|
||||
|
||||
/// getDSGraph - Return the data structure graph for the specified function.
|
||||
/// This returns the folded graph. The folded graph is the same as the CBU
|
||||
/// graph iff the function is in a singleton equivalence class AND all its
|
||||
/// callees also have the same folded graph as the CBU graph.
|
||||
///
|
||||
DSGraph &getDSGraph(const Function &F) const {
|
||||
hash_map<const Function*, DSGraph*>::const_iterator I = DSInfo.find(&F);
|
||||
assert(I != DSInfo.end() && "No graph computed for that function!");
|
||||
return *I->second;
|
||||
}
|
||||
|
||||
bool hasGraph(const Function &F) const {
|
||||
return DSInfo.find(&F) != DSInfo.end();
|
||||
}
|
||||
|
||||
/// ContainsDSGraphFor - Return true if we have a graph for the specified
|
||||
/// function.
|
||||
bool ContainsDSGraphFor(const Function &F) const {
|
||||
return DSInfo.find(&F) != DSInfo.end();
|
||||
}
|
||||
|
||||
/// getSomeCalleeForCallSite - Return any one callee function at
|
||||
/// a call site.
|
||||
///
|
||||
Function *getSomeCalleeForCallSite(const CallSite &CS) const;
|
||||
|
||||
DSGraph &getGlobalsGraph() const {
|
||||
return *GlobalsGraph;
|
||||
}
|
||||
|
||||
typedef std::set<std::pair<Instruction*, Function*> > ActualCalleesTy;
|
||||
const ActualCalleesTy &getActualCallees() const {
|
||||
return ActualCallees;
|
||||
}
|
||||
|
||||
typedef ActualCalleesTy::const_iterator callee_iterator;
|
||||
callee_iterator callee_begin(Instruction *I) const {
|
||||
return ActualCallees.lower_bound(std::pair<Instruction*,Function*>(I, 0));
|
||||
}
|
||||
|
||||
callee_iterator callee_end(Instruction *I) const {
|
||||
I = (Instruction*)((char*)I + 1);
|
||||
return ActualCallees.lower_bound(std::pair<Instruction*,Function*>(I, 0));
|
||||
}
|
||||
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.setPreservesAll();
|
||||
AU.addRequired<CompleteBUDataStructures>();
|
||||
}
|
||||
|
||||
private:
|
||||
void buildIndirectFunctionSets(Module &M);
|
||||
|
||||
unsigned processSCC(DSGraph &FG, std::vector<DSGraph*> &Stack,
|
||||
unsigned &NextID,
|
||||
std::map<DSGraph*, unsigned> &ValMap);
|
||||
void processGraph(DSGraph &FG);
|
||||
|
||||
DSGraph &getOrCreateGraph(Function &F);
|
||||
};
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
#endif
|
Loading…
x
Reference in New Issue
Block a user