mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-11-02 22:23:10 +00:00
Add new RegionInfo pass.
The RegionInfo pass detects single entry single exit regions in a function, where a region is defined as any subgraph that is connected to the remaining graph at only two spots. Furthermore an hierarchical region tree is built. Use it by calling "opt -regions analyze" or "opt -view-regions". git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109089 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
@@ -154,6 +154,13 @@ namespace llvm {
|
||||
// print debug info intrinsics in human readable form
|
||||
FunctionPass *createDbgInfoPrinterPass();
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
//
|
||||
// createRegionInfoPass - This pass finds all single entry single exit regions
|
||||
// in a function and builds the region hierarchy.
|
||||
//
|
||||
FunctionPass *createRegionInfoPass();
|
||||
|
||||
// Print module-level debug info metadata in human-readable form.
|
||||
ModulePass *createModuleDebugInfoPrinterPass();
|
||||
}
|
||||
|
||||
601
include/llvm/Analysis/RegionInfo.h
Normal file
601
include/llvm/Analysis/RegionInfo.h
Normal file
@@ -0,0 +1,601 @@
|
||||
//===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Calculate a program structure tree built out of single entry single exit
|
||||
// regions.
|
||||
// The basic ideas are taken from "The Program Structure Tree - Richard Johnson,
|
||||
// David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The
|
||||
// Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana
|
||||
// Koehler - 2009".
|
||||
// The algorithm to calculate these data structures however is completely
|
||||
// different, as it takes advantage of existing information already available
|
||||
// in (Post)dominace tree and dominance frontier passes. This leads to a simpler
|
||||
// and in practice hopefully better performing algorithm. The runtime of the
|
||||
// algorithms described in the papers above are both linear in graph size,
|
||||
// O(V+E), whereas this algorithm is not, as the dominance frontier information
|
||||
// itself is not, but in practice runtime seems to be in the order of magnitude
|
||||
// of dominance tree calculation.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_ANALYSIS_REGION_INFO_H
|
||||
#define LLVM_ANALYSIS_REGION_INFO_H
|
||||
|
||||
#include "llvm/ADT/PointerIntPair.h"
|
||||
#include "llvm/Analysis/Dominators.h"
|
||||
#include "llvm/Analysis/PostDominators.h"
|
||||
#include "llvm/Support/Allocator.h"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class Region;
|
||||
class RegionInfo;
|
||||
class raw_ostream;
|
||||
|
||||
/// @brief Marker class to iterate over the elements of a Region in flat mode.
|
||||
///
|
||||
/// The class is used to either iterate in Flat mode or by not using it to not
|
||||
/// iterate in Flat mode. During a Flat mode iteration all Regions are entered
|
||||
/// and the iteration returns every BasicBlock. If the Flat mode is not
|
||||
/// selected for SubRegions just one RegionNode containing the subregion is
|
||||
/// returned.
|
||||
template <class GraphType>
|
||||
class FlatIt {};
|
||||
|
||||
/// @brief A RegionNode represents a subregion or a BasicBlock that is part of a
|
||||
/// Region.
|
||||
class RegionNode {
|
||||
// DO NOT IMPLEMENT
|
||||
RegionNode(const RegionNode &);
|
||||
// DO NOT IMPLEMENT
|
||||
const RegionNode &operator=(const RegionNode &);
|
||||
|
||||
/// This is the entry basic block that starts this region node. If this is a
|
||||
/// BasicBlock RegionNode, then entry is just the basic block, that this
|
||||
/// RegionNode represents. Otherwise it is the entry of this (Sub)RegionNode.
|
||||
///
|
||||
/// In the BBtoRegionNode map of the parent of this node, BB will always map
|
||||
/// to this node no matter which kind of node this one is.
|
||||
///
|
||||
/// The node can hold either a Region or a BasicBlock.
|
||||
/// Use one bit to save, if this RegionNode is a subregion or BasicBlock
|
||||
/// RegionNode.
|
||||
PointerIntPair<BasicBlock*, 1, bool> entry;
|
||||
|
||||
protected:
|
||||
/// @brief The parent Region of this RegionNode.
|
||||
/// @see getParent()
|
||||
Region* parent;
|
||||
|
||||
public:
|
||||
/// @brief Create a RegionNode.
|
||||
///
|
||||
/// @param Parent The parent of this RegionNode.
|
||||
/// @param Entry The entry BasicBlock of the RegionNode. If this
|
||||
/// RegionNode represents a BasicBlock, this is the
|
||||
/// BasicBlock itself. If it represents a subregion, this
|
||||
/// is the entry BasicBlock of the subregion.
|
||||
/// @param isSubRegion If this RegionNode represents a SubRegion.
|
||||
inline RegionNode(Region* Parent, BasicBlock* Entry, bool isSubRegion = 0)
|
||||
: entry(Entry, isSubRegion), parent(Parent) {}
|
||||
|
||||
/// @brief Get the parent Region of this RegionNode.
|
||||
///
|
||||
/// The parent Region is the Region this RegionNode belongs to. If for
|
||||
/// example a BasicBlock is element of two Regions, there exist two
|
||||
/// RegionNodes for this BasicBlock. Each with the getParent() function
|
||||
/// pointing to the Region this RegionNode belongs to.
|
||||
///
|
||||
/// @return Get the parent Region of this RegionNode.
|
||||
inline Region* getParent() const { return parent; }
|
||||
|
||||
/// @brief Get the entry BasicBlock of this RegionNode.
|
||||
///
|
||||
/// If this RegionNode represents a BasicBlock this is just the BasicBlock
|
||||
/// itself, otherwise we return the entry BasicBlock of the Subregion
|
||||
///
|
||||
/// @return The entry BasicBlock of this RegionNode.
|
||||
inline BasicBlock* getEntry() const { return entry.getPointer(); }
|
||||
|
||||
/// @brief Get the content of this RegionNode.
|
||||
///
|
||||
/// This can be either a BasicBlock or a subregion. Before calling getNodeAs()
|
||||
/// check the type of the content with the isSubRegion() function call.
|
||||
///
|
||||
/// @return The content of this RegionNode.
|
||||
template<class T>
|
||||
inline T* getNodeAs() const;
|
||||
|
||||
/// @brief Is this RegionNode a subregion?
|
||||
///
|
||||
/// @return True if it contains a subregion. False if it contains a
|
||||
/// BasicBlock.
|
||||
inline bool isSubRegion() const {
|
||||
return entry.getInt();
|
||||
}
|
||||
};
|
||||
|
||||
/// Print a RegionNode.
|
||||
inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node);
|
||||
|
||||
template<>
|
||||
inline BasicBlock* RegionNode::getNodeAs<BasicBlock>() const {
|
||||
assert(!isSubRegion() && "This is not a BasicBlock RegionNode!");
|
||||
return getEntry();
|
||||
}
|
||||
|
||||
template<>
|
||||
inline Region* RegionNode::getNodeAs<Region>() const {
|
||||
assert(isSubRegion() && "This is not a subregion RegionNode!");
|
||||
return reinterpret_cast<Region*>(const_cast<RegionNode*>(this));
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
/// @brief A single entry single exit Region.
|
||||
///
|
||||
/// A Region is a connected subgraph of a control flow graph that has exactly
|
||||
/// two connections to the remaining graph. It can be used to analyze or
|
||||
/// optimize parts of the control flow graph.
|
||||
///
|
||||
/// A <em> simple Region </em> is connected to the remaing graph by just two
|
||||
/// edges. One edge entering the Region and another one leaving the Region.
|
||||
///
|
||||
/// An <em> extended Region </em> (or just Region) is a subgraph that can be
|
||||
/// transform into a simple Region. The transformation is done by adding
|
||||
/// BasicBlocks that merge several entry or exit edges so that after the merge
|
||||
/// just one entry and one exit edge exists.
|
||||
///
|
||||
/// The \e Entry of a Region is the first BasicBlock that is passed after
|
||||
/// entering the Region. It is an element of the Region. The entry BasicBlock
|
||||
/// dominates all BasicBlocks in the Region.
|
||||
///
|
||||
/// The \e Exit of a Region is the first BasicBlock that is passed after
|
||||
/// leaving the Region. It is not an element of the Region. The exit BasicBlock,
|
||||
/// postdominates all BasicBlocks in the Region.
|
||||
///
|
||||
/// A <em> canonical Region </em> cannot be constructed by combining smaller
|
||||
/// Regions.
|
||||
///
|
||||
/// Region A is the \e parent of Region B, if B is completely contained in A.
|
||||
///
|
||||
/// Two canonical Regions either do not intersect at all or one is
|
||||
/// the parent of the other.
|
||||
///
|
||||
/// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of
|
||||
/// Regions in the control flow graph and E is the \e parent relation of these
|
||||
/// Regions.
|
||||
///
|
||||
/// Example:
|
||||
///
|
||||
/// \verbatim
|
||||
/// A simple control flow graph, that contains two regions.
|
||||
///
|
||||
/// 1
|
||||
/// / |
|
||||
/// 2 |
|
||||
/// / \ 3
|
||||
/// 4 5 |
|
||||
/// | | |
|
||||
/// 6 7 8
|
||||
/// \ | /
|
||||
/// \ |/ Region A: 1 -> 9 {1,2,3,4,5,6,7,8}
|
||||
/// 9 Region B: 2 -> 9 {2,4,5,6,7}
|
||||
/// \endverbatim
|
||||
///
|
||||
/// You can obtain more examples by either calling
|
||||
///
|
||||
/// <tt> "opt -regions -analyze anyprogram.ll" </tt>
|
||||
/// or
|
||||
/// <tt> "opt -view-regions-only anyprogram.ll" </tt>
|
||||
///
|
||||
/// on any LLVM file you are interested in.
|
||||
///
|
||||
/// The first call returns a textual representation of the program structure
|
||||
/// tree, the second one creates a graphical representation using graphviz.
|
||||
class Region : public RegionNode {
|
||||
friend class RegionInfo;
|
||||
// DO NOT IMPLEMENT
|
||||
Region(const Region &);
|
||||
// DO NOT IMPLEMENT
|
||||
const Region &operator=(const Region &);
|
||||
|
||||
// Information necessary to manage this Region.
|
||||
RegionInfo* RI;
|
||||
DominatorTree *DT;
|
||||
|
||||
// The exit BasicBlock of this region.
|
||||
// (The entry BasicBlock is part of RegionNode)
|
||||
BasicBlock *exit;
|
||||
|
||||
typedef std::vector<Region*> RegionSet;
|
||||
|
||||
// The subregions of this region.
|
||||
RegionSet children;
|
||||
|
||||
typedef std::map<BasicBlock*, RegionNode*> BBNodeMapT;
|
||||
|
||||
// Save the BasicBlock RegionNodes that are element of this Region.
|
||||
mutable BBNodeMapT BBNodeMap;
|
||||
|
||||
/// verifyBBInRegion - Check if a BB is in this Region. This check also works
|
||||
/// if the region is incorrectly built. (EXPENSIVE!)
|
||||
void verifyBBInRegion(BasicBlock* BB) const;
|
||||
|
||||
/// verifyWalk - Walk over all the BBs of the region starting from BB and
|
||||
/// verify that all reachable basic blocks are elements of the region.
|
||||
/// (EXPENSIVE!)
|
||||
void verifyWalk(BasicBlock* BB, std::set<BasicBlock*>* visitedBB) const;
|
||||
|
||||
/// verifyRegionNest - Verify if the region and its children are valid
|
||||
/// regions (EXPENSIVE!)
|
||||
void verifyRegionNest() const;
|
||||
|
||||
public:
|
||||
/// @brief Create a new region.
|
||||
///
|
||||
/// @param Entry The entry basic block of the region.
|
||||
/// @param Exit The exit basic block of the region.
|
||||
/// @param RI The region info object that is managing this region.
|
||||
/// @param DT The dominator tree of the current function.
|
||||
/// @param Parent The surrounding region or NULL if this is a top level
|
||||
/// region.
|
||||
Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo* RI,
|
||||
DominatorTree *DT, Region *Parent = 0);
|
||||
|
||||
/// Delete the Region and all its subregions.
|
||||
~Region();
|
||||
|
||||
/// @brief Get the entry BasicBlock of the Region.
|
||||
/// @return The entry BasicBlock of the region.
|
||||
BasicBlock *getEntry() const { return RegionNode::getEntry(); }
|
||||
|
||||
/// @brief Get the exit BasicBlock of the Region.
|
||||
/// @return The exit BasicBlock of the Region, NULL if this is the TopLevel
|
||||
/// Region.
|
||||
BasicBlock *getExit() const { return exit; }
|
||||
|
||||
/// @brief Get the parent of the Region.
|
||||
/// @return The parent of the Region or NULL if this is a top level
|
||||
/// Region.
|
||||
Region *getParent() const { return RegionNode::getParent(); }
|
||||
|
||||
/// @brief Get the RegionNode representing the current Region.
|
||||
/// @return The RegionNode representing the current Region.
|
||||
RegionNode* getNode() const {
|
||||
return const_cast<RegionNode*>(reinterpret_cast<const RegionNode*>(this));
|
||||
}
|
||||
|
||||
/// @brief Get the nesting level of this Region.
|
||||
///
|
||||
/// An toplevel Region has depth 0.
|
||||
///
|
||||
/// @return The depth of the region.
|
||||
unsigned getDepth() const;
|
||||
|
||||
/// @brief Is this a simple region?
|
||||
///
|
||||
/// A region is simple if it has exactly one exit and one entry edge.
|
||||
///
|
||||
/// @return True if the Region is simple.
|
||||
bool isSimple() const;
|
||||
|
||||
/// @brief Returns the name of the Region.
|
||||
/// @return The Name of the Region.
|
||||
std::string getNameStr() const {
|
||||
std::string exitName;
|
||||
|
||||
if (getExit())
|
||||
exitName = getExit()->getNameStr();
|
||||
else
|
||||
exitName = "<Function Return>";
|
||||
|
||||
return getEntry()->getNameStr() + " => " + exitName;
|
||||
}
|
||||
|
||||
/// @brief Return the RegionInfo object, that belongs to this Region.
|
||||
RegionInfo *getRegionInfo() const {
|
||||
return RI;
|
||||
}
|
||||
|
||||
/// @brief Print the region.
|
||||
///
|
||||
/// @param OS The output stream the Region is printed to.
|
||||
/// @param printTree Print also the tree of subregions.
|
||||
/// @param level The indentation level used for printing.
|
||||
void print(raw_ostream& OS, bool printTree = true, unsigned level = 0) const;
|
||||
|
||||
/// @brief Print the region to stderr.
|
||||
void dump() const;
|
||||
|
||||
/// @brief Check if the region contains a BasicBlock.
|
||||
///
|
||||
/// @param BB The BasicBlock that might be contained in this Region.
|
||||
/// @return True if the block is contained in the region otherwise false.
|
||||
bool contains(const BasicBlock *BB) const;
|
||||
|
||||
/// @brief Check if the region contains another region.
|
||||
///
|
||||
/// @param SubRegion The region that might be contained in this Region.
|
||||
/// @return True if SubRegion is contained in the region otherwise false.
|
||||
bool contains(const Region *SubRegion) const {
|
||||
// Toplevel Region.
|
||||
if (!getExit())
|
||||
return true;
|
||||
|
||||
return contains(SubRegion->getEntry())
|
||||
&& (contains(SubRegion->getExit()) || SubRegion->getExit() == getExit());
|
||||
}
|
||||
|
||||
/// @brief Check if the region contains an Instruction.
|
||||
///
|
||||
/// @param Inst The Instruction that might be contained in this region.
|
||||
/// @return True if the Instruction is contained in the region otherwise false.
|
||||
bool contains(const Instruction *Inst) const {
|
||||
return contains(Inst->getParent());
|
||||
}
|
||||
|
||||
/// @brief Get the subregion that starts at a BasicBlock
|
||||
///
|
||||
/// @param BB The BasicBlock the subregion should start.
|
||||
/// @return The Subregion if available, otherwise NULL.
|
||||
Region* getSubRegionNode(BasicBlock *BB) const;
|
||||
|
||||
/// @brief Get the RegionNode for a BasicBlock
|
||||
///
|
||||
/// @param BB The BasicBlock at which the RegionNode should start.
|
||||
/// @return If available, the RegionNode that represents the subregion
|
||||
/// starting at BB. If no subregion starts at BB, the RegionNode
|
||||
/// representing BB.
|
||||
RegionNode* getNode(BasicBlock *BB) const;
|
||||
|
||||
/// @brief Get the BasicBlock RegionNode for a BasicBlock
|
||||
///
|
||||
/// @param BB The BasicBlock for which the RegionNode is requested.
|
||||
/// @return The RegionNode representing the BB.
|
||||
RegionNode* getBBNode(BasicBlock *BB) const;
|
||||
|
||||
/// @brief Add a new subregion to this Region.
|
||||
///
|
||||
/// @param SubRegion The new subregion that will be added.
|
||||
void addSubRegion(Region *SubRegion);
|
||||
|
||||
/// @brief Remove a subregion from this Region.
|
||||
///
|
||||
/// The subregion is not deleted, as it will probably be inserted into another
|
||||
/// region.
|
||||
/// @param SubRegion The SubRegion that will be removed.
|
||||
Region *removeSubRegion(Region *SubRegion);
|
||||
|
||||
/// @brief Move all direct child nodes of this Region to another Region.
|
||||
///
|
||||
/// @param To The Region the child nodes will be transfered to.
|
||||
void transferChildrenTo(Region *To);
|
||||
|
||||
/// @brief Verify if the region is a correct region.
|
||||
///
|
||||
/// Check if this is a correctly build Region. This is an expensive check, as
|
||||
/// the complete CFG of the Region will be walked.
|
||||
void verifyRegion() const;
|
||||
|
||||
/// @brief Clear the cache for BB RegionNodes.
|
||||
///
|
||||
/// After calling this function the BasicBlock RegionNodes will be stored at
|
||||
/// different memory locations. RegionNodes obtained before this function is
|
||||
/// called are therefore not comparable to RegionNodes abtained afterwords.
|
||||
void clearNodeCache();
|
||||
|
||||
/// @name Subregion Iterators
|
||||
///
|
||||
/// These iterators iterator over all subregions of this Region.
|
||||
//@{
|
||||
typedef RegionSet::iterator iterator;
|
||||
typedef RegionSet::const_iterator const_iterator;
|
||||
|
||||
iterator begin() { return children.begin(); }
|
||||
iterator end() { return children.end(); }
|
||||
|
||||
const_iterator begin() const { return children.begin(); }
|
||||
const_iterator end() const { return children.end(); }
|
||||
//@}
|
||||
|
||||
/// @name BasicBlock Iterators
|
||||
///
|
||||
/// These iterators iterate over all BasicBlock RegionNodes that are
|
||||
/// contained in this Region. The iterator also iterates over BasicBlocks
|
||||
/// that are elements of a subregion of this Region. It is therefore called a
|
||||
/// flat iterator.
|
||||
//@{
|
||||
typedef df_iterator<RegionNode*, SmallPtrSet<RegionNode*, 8>, false,
|
||||
GraphTraits<FlatIt<RegionNode*> > > block_iterator;
|
||||
|
||||
typedef df_iterator<const RegionNode*, SmallPtrSet<const RegionNode*, 8>,
|
||||
false, GraphTraits<FlatIt<const RegionNode*> > >
|
||||
const_block_iterator;
|
||||
|
||||
block_iterator block_begin();
|
||||
block_iterator block_end();
|
||||
|
||||
const_block_iterator block_begin() const;
|
||||
const_block_iterator block_end() const;
|
||||
//@}
|
||||
|
||||
/// @name Element Iterators
|
||||
///
|
||||
/// These iterators iterate over all BasicBlock and subregion RegionNodes that
|
||||
/// are direct children of this Region. It does not iterate over any
|
||||
/// RegionNodes that are also element of a subregion of this Region.
|
||||
//@{
|
||||
typedef df_iterator<RegionNode*, SmallPtrSet<RegionNode*, 8>, false,
|
||||
GraphTraits<RegionNode*> > element_iterator;
|
||||
|
||||
typedef df_iterator<const RegionNode*, SmallPtrSet<const RegionNode*, 8>,
|
||||
false, GraphTraits<const RegionNode*> >
|
||||
const_element_iterator;
|
||||
|
||||
element_iterator element_begin();
|
||||
element_iterator element_end();
|
||||
|
||||
const_element_iterator element_begin() const;
|
||||
const_element_iterator element_end() const;
|
||||
//@}
|
||||
};
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
/// @brief Analysis that detects all canonical Regions.
|
||||
///
|
||||
/// The RegionInfo pass detects all canonical regions in a function. The Regions
|
||||
/// are connected using the parent relation. This builds a Program Structure
|
||||
/// Tree.
|
||||
class RegionInfo : public FunctionPass {
|
||||
typedef DenseMap<BasicBlock*,BasicBlock*> BBtoBBMap;
|
||||
typedef DenseMap<BasicBlock*, Region*> BBtoRegionMap;
|
||||
typedef SmallPtrSet<Region*, 4> RegionSet;
|
||||
|
||||
// DO NOT IMPLEMENT
|
||||
RegionInfo(const RegionInfo &);
|
||||
// DO NOT IMPLEMENT
|
||||
const RegionInfo &operator=(const RegionInfo &);
|
||||
|
||||
DominatorTree *DT;
|
||||
PostDominatorTree *PDT;
|
||||
DominanceFrontier *DF;
|
||||
|
||||
/// The top level region.
|
||||
Region *TopLevelRegion;
|
||||
|
||||
/// Map every BB to the smallest region, that contains BB.
|
||||
BBtoRegionMap BBtoRegion;
|
||||
|
||||
// isCommonDomFrontier - Returns true if BB is in the dominance frontier of
|
||||
// entry, because it was inherited from exit. In the other case there is an
|
||||
// edge going from entry to BB without passing exit.
|
||||
bool isCommonDomFrontier(BasicBlock* BB, BasicBlock* entry,
|
||||
BasicBlock* exit) const;
|
||||
|
||||
// isRegion - Check if entry and exit surround a valid region, based on
|
||||
// dominance tree and dominance frontier.
|
||||
bool isRegion(BasicBlock* entry, BasicBlock* exit) const;
|
||||
|
||||
// insertShortCut - Saves a shortcut pointing from entry to exit.
|
||||
// This function may extend this shortcut if possible.
|
||||
void insertShortCut(BasicBlock* entry, BasicBlock* exit,
|
||||
BBtoBBMap* ShortCut) const;
|
||||
|
||||
// getNextPostDom - Returns the next BB that postdominates N, while skipping
|
||||
// all post dominators that cannot finish a canonical region.
|
||||
DomTreeNode *getNextPostDom(DomTreeNode* N, BBtoBBMap *ShortCut) const;
|
||||
|
||||
// isTrivialRegion - A region is trivial, if it contains only one BB.
|
||||
bool isTrivialRegion(BasicBlock *entry, BasicBlock *exit) const;
|
||||
|
||||
// createRegion - Creates a single entry single exit region.
|
||||
Region *createRegion(BasicBlock *entry, BasicBlock *exit);
|
||||
|
||||
// findRegionsWithEntry - Detect all regions starting with bb 'entry'.
|
||||
void findRegionsWithEntry(BasicBlock *entry, BBtoBBMap *ShortCut);
|
||||
|
||||
// scanForRegions - Detects regions in F.
|
||||
void scanForRegions(Function &F, BBtoBBMap *ShortCut);
|
||||
|
||||
// getTopMostParent - Get the top most parent with the same entry block.
|
||||
Region *getTopMostParent(Region *region);
|
||||
|
||||
// buildRegionsTree - build the region hierarchy after all region detected.
|
||||
void buildRegionsTree(DomTreeNode *N, Region *region);
|
||||
|
||||
// Calculate - detecte all regions in function and build the region tree.
|
||||
void Calculate(Function& F);
|
||||
|
||||
void releaseMemory();
|
||||
|
||||
// updateStatistics - Update statistic about created regions.
|
||||
void updateStatistics(Region *R);
|
||||
|
||||
// isSimple - Check if a region is a simple region with exactly one entry
|
||||
// edge and exactly one exit edge.
|
||||
bool isSimple(Region* R) const;
|
||||
|
||||
public:
|
||||
static char ID;
|
||||
explicit RegionInfo();
|
||||
|
||||
~RegionInfo();
|
||||
|
||||
/// @name FunctionPass interface
|
||||
//@{
|
||||
virtual bool runOnFunction(Function &F);
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
|
||||
virtual void print(raw_ostream &OS, const Module *) const;
|
||||
virtual void verifyAnalysis() const;
|
||||
//@}
|
||||
|
||||
/// @brief Get the smallest region that contains a BasicBlock.
|
||||
///
|
||||
/// @param BB The basic block.
|
||||
/// @return The smallest region, that contains BB or NULL, if there is no
|
||||
/// region containing BB.
|
||||
Region *getRegionFor(BasicBlock *BB) const;
|
||||
|
||||
/// @brief A shortcut for getRegionFor().
|
||||
///
|
||||
/// @param BB The basic block.
|
||||
/// @return The smallest region, that contains BB or NULL, if there is no
|
||||
/// region containing BB.
|
||||
Region *operator[](BasicBlock *BB) const;
|
||||
|
||||
/// @brief Find the smallest region that contains two regions.
|
||||
///
|
||||
/// @param A The first region.
|
||||
/// @param B The second region.
|
||||
/// @return The smallest region containing A and B.
|
||||
Region *getCommonRegion(Region* A, Region *B) const;
|
||||
|
||||
/// @brief Find the smallest region that contains two basic blocks.
|
||||
///
|
||||
/// @param A The first basic block.
|
||||
/// @param B The second basic block.
|
||||
/// @return The smallest region that contains A and B.
|
||||
Region* getCommonRegion(BasicBlock* A, BasicBlock *B) const {
|
||||
return getCommonRegion(getRegionFor(A), getRegionFor(B));
|
||||
}
|
||||
|
||||
/// @brief Find the smallest region that contains a set of regions.
|
||||
///
|
||||
/// @param Regions A vector of regions.
|
||||
/// @return The smallest region that contains all regions in Regions.
|
||||
Region* getCommonRegion(SmallVectorImpl<Region*> &Regions) const;
|
||||
|
||||
/// @brief Find the smallest region that contains a set of basic blocks.
|
||||
///
|
||||
/// @param BBs A vector of basic blocks.
|
||||
/// @return The smallest region that contains all basic blocks in BBS.
|
||||
Region* getCommonRegion(SmallVectorImpl<BasicBlock*> &BBs) const;
|
||||
|
||||
Region *getTopLevelRegion() const {
|
||||
return TopLevelRegion;
|
||||
}
|
||||
|
||||
/// @brief Clear the Node Cache for all Regions.
|
||||
///
|
||||
/// @see Region::clearNodeCache()
|
||||
void clearNodeCache() {
|
||||
if (TopLevelRegion)
|
||||
TopLevelRegion->clearNodeCache();
|
||||
}
|
||||
};
|
||||
|
||||
inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node) {
|
||||
if (Node.isSubRegion())
|
||||
return OS << Node.getNodeAs<Region>()->getNameStr();
|
||||
else
|
||||
return OS << Node.getNodeAs<BasicBlock>()->getNameStr();
|
||||
}
|
||||
} // End llvm namespace
|
||||
#endif
|
||||
|
||||
342
include/llvm/Analysis/RegionIterator.h
Normal file
342
include/llvm/Analysis/RegionIterator.h
Normal file
@@ -0,0 +1,342 @@
|
||||
//===- RegionIterator.h - Iterators to iteratate over Regions ---*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
// This file defines the iterators to iterate over the elements of a Region.
|
||||
//===----------------------------------------------------------------------===//
|
||||
#ifndef LLVM_ANALYSIS_REGION_ITERATOR_H
|
||||
#define LLVM_ANALYSIS_REGION_ITERATOR_H
|
||||
|
||||
#include "llvm/ADT/GraphTraits.h"
|
||||
#include "llvm/ADT/SmallPtrSet.h"
|
||||
#include "llvm/ADT/PointerIntPair.h"
|
||||
#include "llvm/Analysis/RegionInfo.h"
|
||||
#include "llvm/Support/CFG.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
|
||||
namespace llvm {
|
||||
//===----------------------------------------------------------------------===//
|
||||
/// @brief Hierachical RegionNode successor iterator.
|
||||
///
|
||||
/// This iterator iterates over all successors of a RegionNode.
|
||||
///
|
||||
/// For a BasicBlock RegionNode it skips all BasicBlocks that are not part of
|
||||
/// the parent Region. Furthermore for BasicBlocks that start a subregion, a
|
||||
/// RegionNode representing the subregion is returned.
|
||||
///
|
||||
/// For a subregion RegionNode there is just one successor. The RegionNode
|
||||
/// representing the exit of the subregion.
|
||||
template<class NodeType>
|
||||
class RNSuccIterator : public std::iterator<std::forward_iterator_tag,
|
||||
NodeType, ptrdiff_t>
|
||||
{
|
||||
typedef std::iterator<std::forward_iterator_tag, NodeType, ptrdiff_t> super;
|
||||
// The iterator works in two modes, bb mode or region mode.
|
||||
enum ItMode{
|
||||
// In BB mode it returns all successors of this BasicBlock as its
|
||||
// successors.
|
||||
ItBB,
|
||||
// In region mode there is only one successor, thats the regionnode mapping
|
||||
// to the exit block of the regionnode
|
||||
ItRgBegin, // At the beginning of the regionnode successor.
|
||||
ItRgEnd // At the end of the regionnode successor.
|
||||
};
|
||||
|
||||
// Use two bit to represent the mode iterator.
|
||||
PointerIntPair<NodeType*, 2, enum ItMode> Node;
|
||||
|
||||
// The block successor iterator.
|
||||
succ_iterator BItor;
|
||||
|
||||
// advanceRegionSucc - A region node has only one successor. It reaches end
|
||||
// once we advance it.
|
||||
void advanceRegionSucc() {
|
||||
assert(Node.getInt() == ItRgBegin && "Cannot advance region successor!");
|
||||
Node.setInt(ItRgEnd);
|
||||
}
|
||||
|
||||
NodeType* getNode() const{ return Node.getPointer(); }
|
||||
|
||||
// isRegionMode - Is the current iterator in region mode?
|
||||
bool isRegionMode() const { return Node.getInt() != ItBB; }
|
||||
|
||||
// Get the immediate successor. This function may return a Basic Block
|
||||
// RegionNode or a subregion RegionNode.
|
||||
RegionNode* getISucc(BasicBlock* BB) const {
|
||||
RegionNode *succ;
|
||||
succ = getNode()->getParent()->getNode(BB);
|
||||
assert(succ && "BB not in Region or entered subregion!");
|
||||
return succ;
|
||||
}
|
||||
|
||||
// getRegionSucc - Return the successor basic block of a SubRegion RegionNode.
|
||||
inline BasicBlock* getRegionSucc() const {
|
||||
assert(Node.getInt() == ItRgBegin && "Cannot get the region successor!");
|
||||
return getNode()->template getNodeAs<Region>()->getExit();
|
||||
}
|
||||
|
||||
// isExit - Is this the exit BB of the Region?
|
||||
inline bool isExit(BasicBlock* BB) const {
|
||||
return getNode()->getParent()->getExit() == BB;
|
||||
}
|
||||
public:
|
||||
typedef RNSuccIterator<NodeType> Self;
|
||||
|
||||
typedef typename super::pointer pointer;
|
||||
|
||||
/// @brief Create begin iterator of a RegionNode.
|
||||
inline RNSuccIterator(NodeType* node)
|
||||
: Node(node, node->isSubRegion() ? ItRgBegin : ItBB),
|
||||
BItor(succ_begin(node->getEntry())) {
|
||||
|
||||
|
||||
// Skip the exit block
|
||||
if (!isRegionMode())
|
||||
while (succ_end(node->getEntry()) != BItor && isExit(*BItor))
|
||||
++BItor;
|
||||
|
||||
if (isRegionMode() && isExit(getRegionSucc()))
|
||||
advanceRegionSucc();
|
||||
}
|
||||
|
||||
/// @brief Create an end iterator.
|
||||
inline RNSuccIterator(NodeType* node, bool)
|
||||
: Node(node, node->isSubRegion() ? ItRgEnd : ItBB),
|
||||
BItor(succ_end(node->getEntry())) {}
|
||||
|
||||
inline bool operator==(const Self& x) const {
|
||||
assert(isRegionMode() == x.isRegionMode() && "Broken iterator!");
|
||||
if (isRegionMode())
|
||||
return Node.getInt() == x.Node.getInt();
|
||||
else
|
||||
return BItor == x.BItor;
|
||||
}
|
||||
|
||||
inline bool operator!=(const Self& x) const { return !operator==(x); }
|
||||
|
||||
inline pointer operator*() const {
|
||||
BasicBlock* BB = isRegionMode() ? getRegionSucc() : *BItor;
|
||||
assert(!isExit(BB) && "Iterator out of range!");
|
||||
return getISucc(BB);
|
||||
}
|
||||
|
||||
inline Self& operator++() {
|
||||
if(isRegionMode()) {
|
||||
// The Region only has 1 successor.
|
||||
advanceRegionSucc();
|
||||
} else {
|
||||
// Skip the exit.
|
||||
do
|
||||
++BItor;
|
||||
while (BItor != succ_end(getNode()->getEntry())
|
||||
&& isExit(*BItor));
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline Self operator++(int) {
|
||||
Self tmp = *this;
|
||||
++*this;
|
||||
return tmp;
|
||||
}
|
||||
|
||||
inline const Self &operator=(const Self &I) {
|
||||
if (this != &I) {
|
||||
assert(getNode()->getParent() == I.getNode()->getParent()
|
||||
&& "Cannot assign iterators of two different regions!");
|
||||
Node = I.Node;
|
||||
BItor = I.BItor;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
/// @brief Flat RegionNode iterator.
|
||||
///
|
||||
/// The Flat Region iterator will iterate over all BasicBlock RegionNodes that
|
||||
/// are contained in the Region and its subregions. This is close to a virtual
|
||||
/// control flow graph of the Region.
|
||||
template<class NodeType>
|
||||
class RNSuccIterator<FlatIt<NodeType> >
|
||||
: public std::iterator<std::forward_iterator_tag, NodeType, ptrdiff_t>
|
||||
{
|
||||
typedef std::iterator<std::forward_iterator_tag, NodeType, ptrdiff_t> super;
|
||||
NodeType* Node;
|
||||
succ_iterator Itor;
|
||||
|
||||
public:
|
||||
typedef RNSuccIterator<FlatIt<NodeType> > Self;
|
||||
typedef typename super::pointer pointer;
|
||||
|
||||
/// @brief Create the iterator from a RegionNode.
|
||||
///
|
||||
/// Note that the incoming node must be a bb node, otherwise it will trigger
|
||||
/// an assertion when we try to get a BasicBlock.
|
||||
inline RNSuccIterator(NodeType* node) : Node(node),
|
||||
Itor(succ_begin(node->getEntry())) {
|
||||
assert(!Node->isSubRegion()
|
||||
&& "Subregion node not allowed in flat iterating mode!");
|
||||
assert(Node->getParent() && "A BB node must have a parent!");
|
||||
|
||||
// Skip the exit block of the iterating region.
|
||||
while (succ_end(Node->getEntry()) != Itor
|
||||
&& Node->getParent()->getExit() == *Itor)
|
||||
++Itor;
|
||||
}
|
||||
/// @brief Create an end iterator
|
||||
inline RNSuccIterator(NodeType* node, bool) : Node(node),
|
||||
Itor(succ_end(node->getEntry())) {
|
||||
assert(!Node->isSubRegion()
|
||||
&& "Subregion node not allowed in flat iterating mode!");
|
||||
}
|
||||
|
||||
inline bool operator==(const Self& x) const {
|
||||
assert(Node->getParent() == x.Node->getParent()
|
||||
&& "Cannot compare iterators of different regions!");
|
||||
|
||||
return Itor == x.Itor && Node == x.Node;
|
||||
}
|
||||
|
||||
inline bool operator!=(const Self& x) const { return !operator==(x); }
|
||||
|
||||
inline pointer operator*() const {
|
||||
BasicBlock* BB = *Itor;
|
||||
|
||||
// Get the iterating region.
|
||||
Region* Parent = Node->getParent();
|
||||
|
||||
// The only case that the successor reaches out of the region is it reaches
|
||||
// the exit of the region.
|
||||
assert(Parent->getExit() != BB && "iterator out of range!");
|
||||
|
||||
return Parent->getBBNode(BB);
|
||||
}
|
||||
|
||||
inline Self& operator++() {
|
||||
// Skip the exit block of the iterating region.
|
||||
do
|
||||
++Itor;
|
||||
while (Itor != succ_end(Node->getEntry())
|
||||
&& Node->getParent()->getExit() == *Itor);
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline Self operator++(int) {
|
||||
Self tmp = *this;
|
||||
++*this;
|
||||
return tmp;
|
||||
}
|
||||
|
||||
inline const Self &operator=(const Self &I) {
|
||||
if (this != &I) {
|
||||
assert(Node->getParent() == I.Node->getParent()
|
||||
&& "Cannot assign iterators to two different regions!");
|
||||
Node = I.Node;
|
||||
Itor = I.Itor;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
};
|
||||
|
||||
template<class NodeType>
|
||||
inline RNSuccIterator<NodeType> succ_begin(NodeType* Node) {
|
||||
return RNSuccIterator<NodeType>(Node);
|
||||
}
|
||||
|
||||
template<class NodeType>
|
||||
inline RNSuccIterator<NodeType> succ_end(NodeType* Node) {
|
||||
return RNSuccIterator<NodeType>(Node, true);
|
||||
}
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
// RegionNode GraphTraits specialization so the bbs in the region can be
|
||||
// iterate by generic graph iterators.
|
||||
//
|
||||
// NodeT can either be region node or const region node, otherwise child_begin
|
||||
// and child_end fail.
|
||||
|
||||
#define RegionNodeGraphTraits(NodeT) \
|
||||
template<> struct GraphTraits<NodeT*> { \
|
||||
typedef NodeT NodeType; \
|
||||
typedef RNSuccIterator<NodeType> ChildIteratorType; \
|
||||
static NodeType *getEntryNode(NodeType* N) { return N; } \
|
||||
static inline ChildIteratorType child_begin(NodeType *N) { \
|
||||
return RNSuccIterator<NodeType>(N); \
|
||||
} \
|
||||
static inline ChildIteratorType child_end(NodeType *N) { \
|
||||
return RNSuccIterator<NodeType>(N, true); \
|
||||
} \
|
||||
}; \
|
||||
template<> struct GraphTraits<FlatIt<NodeT*> > { \
|
||||
typedef NodeT NodeType; \
|
||||
typedef RNSuccIterator<FlatIt<NodeT> > ChildIteratorType; \
|
||||
static NodeType *getEntryNode(NodeType* N) { return N; } \
|
||||
static inline ChildIteratorType child_begin(NodeType *N) { \
|
||||
return RNSuccIterator<FlatIt<NodeType> >(N); \
|
||||
} \
|
||||
static inline ChildIteratorType child_end(NodeType *N) { \
|
||||
return RNSuccIterator<FlatIt<NodeType> >(N, true); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define RegionGraphTraits(RegionT, NodeT) \
|
||||
template<> struct GraphTraits<RegionT*> \
|
||||
: public GraphTraits<NodeT*> { \
|
||||
typedef df_iterator<NodeType*> nodes_iterator; \
|
||||
static NodeType *getEntryNode(RegionT* R) { \
|
||||
return R->getNode(R->getEntry()); \
|
||||
} \
|
||||
static nodes_iterator nodes_begin(RegionT* R) { \
|
||||
return nodes_iterator::begin(getEntryNode(R)); \
|
||||
} \
|
||||
static nodes_iterator nodes_end(RegionT* R) { \
|
||||
return nodes_iterator::end(getEntryNode(R)); \
|
||||
} \
|
||||
}; \
|
||||
template<> struct GraphTraits<FlatIt<RegionT*> > \
|
||||
: public GraphTraits<FlatIt<NodeT*> > { \
|
||||
typedef df_iterator<NodeType*, SmallPtrSet<NodeType*, 8>, false, \
|
||||
GraphTraits<FlatIt<NodeType*> > > nodes_iterator; \
|
||||
static NodeType *getEntryNode(RegionT* R) { \
|
||||
return R->getBBNode(R->getEntry()); \
|
||||
} \
|
||||
static nodes_iterator nodes_begin(RegionT* R) { \
|
||||
return nodes_iterator::begin(getEntryNode(R)); \
|
||||
} \
|
||||
static nodes_iterator nodes_end(RegionT* R) { \
|
||||
return nodes_iterator::end(getEntryNode(R)); \
|
||||
} \
|
||||
}
|
||||
|
||||
RegionNodeGraphTraits(RegionNode);
|
||||
RegionNodeGraphTraits(const RegionNode);
|
||||
|
||||
RegionGraphTraits(Region, RegionNode);
|
||||
RegionGraphTraits(const Region, const RegionNode);
|
||||
|
||||
template <> struct GraphTraits<RegionInfo*>
|
||||
: public GraphTraits<FlatIt<RegionNode*> > {
|
||||
typedef df_iterator<NodeType*, SmallPtrSet<NodeType*, 8>, false,
|
||||
GraphTraits<FlatIt<NodeType*> > > nodes_iterator;
|
||||
|
||||
static NodeType *getEntryNode(RegionInfo *RI) {
|
||||
return GraphTraits<FlatIt<Region*> >::getEntryNode(RI->getTopLevelRegion());
|
||||
}
|
||||
static nodes_iterator nodes_begin(RegionInfo* RI) {
|
||||
return nodes_iterator::begin(getEntryNode(RI));
|
||||
}
|
||||
static nodes_iterator nodes_end(RegionInfo *RI) {
|
||||
return nodes_iterator::end(getEntryNode(RI));
|
||||
}
|
||||
};
|
||||
|
||||
} // End namespace llvm
|
||||
|
||||
#endif
|
||||
26
include/llvm/Analysis/RegionPrinter.h
Normal file
26
include/llvm/Analysis/RegionPrinter.h
Normal file
@@ -0,0 +1,26 @@
|
||||
//===-- RegionPrinter.h - Region printer external interface -----*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines external functions that can be called to explicitly
|
||||
// instantiate the region printer.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_ANALYSIS_REGIONPRINTER_H
|
||||
#define LLVM_ANALYSIS_REGIONPRINTER_H
|
||||
|
||||
namespace llvm {
|
||||
class FunctionPass;
|
||||
FunctionPass *createRegionViewerPass();
|
||||
FunctionPass *createRegionOnlyViewerPass();
|
||||
FunctionPass *createRegionPrinterPass();
|
||||
FunctionPass *createRegionOnlyPrinterPass();
|
||||
} // End llvm namespace
|
||||
|
||||
#endif
|
||||
@@ -22,6 +22,7 @@
|
||||
#include "llvm/Analysis/Passes.h"
|
||||
#include "llvm/Analysis/PointerTracking.h"
|
||||
#include "llvm/Analysis/PostDominators.h"
|
||||
#include "llvm/Analysis/RegionPrinter.h"
|
||||
#include "llvm/Analysis/ScalarEvolution.h"
|
||||
#include "llvm/Analysis/Lint.h"
|
||||
#include "llvm/Assembly/PrintModulePass.h"
|
||||
@@ -106,6 +107,11 @@ namespace {
|
||||
(void) llvm::createPostDomOnlyViewerPass();
|
||||
(void) llvm::createPostDomViewerPass();
|
||||
(void) llvm::createReassociatePass();
|
||||
(void) llvm::createRegionInfoPass();
|
||||
(void) llvm::createRegionOnlyPrinterPass();
|
||||
(void) llvm::createRegionOnlyViewerPass();
|
||||
(void) llvm::createRegionPrinterPass();
|
||||
(void) llvm::createRegionViewerPass();
|
||||
(void) llvm::createSCCPPass();
|
||||
(void) llvm::createScalarReplAggregatesPass();
|
||||
(void) llvm::createSimplifyLibCallsPass();
|
||||
|
||||
@@ -271,6 +271,12 @@ public:
|
||||
O << "[" << Attrs << "]";
|
||||
O << ";\n";
|
||||
}
|
||||
|
||||
/// getOStream - Get the raw output stream into the graph file. Useful to
|
||||
/// write fancy things using addCustomGraphFeatures().
|
||||
raw_ostream &getOStream() {
|
||||
return O;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename GraphType>
|
||||
|
||||
Reference in New Issue
Block a user