Checkin some major reworks of data structure analysis. This is not done,

nor does it work very well, but I need to get it checked in before I break
the tree unintentionally.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3996 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner
2002-10-01 22:33:50 +00:00
parent 57b062a8cc
commit fccd06fcea
5 changed files with 518 additions and 349 deletions

View File

@@ -10,10 +10,12 @@
#include "llvm/Analysis/DataStructure.h" #include "llvm/Analysis/DataStructure.h"
#include "llvm/Module.h" #include "llvm/Module.h"
#include "llvm/DerivedTypes.h" #include "llvm/DerivedTypes.h"
#include "Support/StatisticReporter.h" #include "Support/Statistic.h"
#include <set> #include <set>
using std::map; using std::map;
#if 0
static RegisterAnalysis<BUDataStructures> static RegisterAnalysis<BUDataStructures>
X("budatastructure", "Bottom-up Data Structure Analysis Closure"); X("budatastructure", "Bottom-up Data Structure Analysis Closure");
@@ -240,3 +242,4 @@ DSGraph &BUDataStructures::calculateGraph(Function &F) {
return *Graph; return *Graph;
} }
#endif

View File

@@ -4,35 +4,43 @@
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
#include "llvm/Analysis/DataStructure.h" #include "llvm/Analysis/DSGraph.h"
#include "llvm/Module.h" #include "llvm/Function.h"
#include "llvm/DerivedTypes.h" #include "llvm/DerivedTypes.h"
#include "Support/STLExtras.h" #include "Support/STLExtras.h"
#include "Support/StatisticReporter.h" #include "Support/Statistic.h"
#include "Support/STLExtras.h" #include "llvm/Target/TargetData.h"
#include <algorithm> #include <algorithm>
#include <set>
using std::vector; using std::vector;
// TODO: FIXME
namespace DataStructureAnalysis {
// isPointerType - Return true if this first class type is big enough to hold
// a pointer.
//
bool isPointerType(const Type *Ty);
extern TargetData TD;
}
using namespace DataStructureAnalysis;
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// DSNode Implementation // DSNode Implementation
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
DSNode::DSNode(enum NodeTy NT, const Type *T) : Ty(T), NodeType(NT) { DSNode::DSNode(enum NodeTy NT, const Type *T) : NodeType(NT) {
// If this node has any fields, allocate them now, but leave them null. // If this node is big enough to have pointer fields, add space for them now.
switch (T->getPrimitiveID()) { if (T != Type::VoidTy && !isa<FunctionType>(T)) // Avoid TargetData assert's
case Type::PointerTyID: Links.resize(1); break; LinkIndex.resize(TD.getTypeSize(T), -1);
case Type::ArrayTyID: Links.resize(1); break;
case Type::StructTyID: TypeEntries.push_back(std::make_pair(T, 0));
Links.resize(cast<StructType>(T)->getNumContainedTypes());
break;
default: break;
}
} }
// DSNode copy constructor... do not copy over the referrers list! // DSNode copy constructor... do not copy over the referrers list!
DSNode::DSNode(const DSNode &N) DSNode::DSNode(const DSNode &N)
: Ty(N.Ty), Links(N.Links), Globals(N.Globals), NodeType(N.NodeType) { : Links(N.Links), LinkIndex(N.LinkIndex),
TypeEntries(N.TypeEntries), Globals(N.Globals), NodeType(N.NodeType) {
} }
void DSNode::removeReferrer(DSNodeHandle *H) { void DSNode::removeReferrer(DSNodeHandle *H) {
@@ -53,7 +61,7 @@ void DSNode::addGlobal(GlobalValue *GV) {
std::lower_bound(Globals.begin(), Globals.end(), GV); std::lower_bound(Globals.begin(), Globals.end(), GV);
if (I == Globals.end() || *I != GV) { if (I == Globals.end() || *I != GV) {
assert(GV->getType()->getElementType() == Ty); //assert(GV->getType()->getElementType() == Ty);
Globals.insert(I, GV); Globals.insert(I, GV);
NodeType |= GlobalNode; NodeType |= GlobalNode;
} }
@@ -63,58 +71,154 @@ void DSNode::addGlobal(GlobalValue *GV) {
// addEdgeTo - Add an edge from the current node to the specified node. This // addEdgeTo - Add an edge from the current node to the specified node. This
// can cause merging of nodes in the graph. // can cause merging of nodes in the graph.
// //
void DSNode::addEdgeTo(unsigned LinkNo, DSNode *N) { void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) {
assert(LinkNo < Links.size() && "LinkNo out of range!"); assert(Offset < LinkIndex.size() && "Offset out of range!");
if (N == 0 || Links[LinkNo] == N) return; // Nothing to do if (NH.getNode() == 0) return; // Nothing to do
if (Links[LinkNo] == 0) { // No merging to perform
Links[LinkNo] = N; if (LinkIndex[Offset] == -1) { // No merging to perform...
LinkIndex[Offset] = Links.size(); // Allocate a new link...
Links.push_back(NH);
return;
}
unsigned Idx = (unsigned)LinkIndex[Offset];
if (!Links[Idx].getNode()) { // No merging to perform
Links[Idx] = NH;
return; return;
} }
// Merge the two nodes... // Merge the two nodes...
Links[LinkNo]->mergeWith(N); Links[Idx].mergeWith(NH);
} }
// mergeWith - Merge this node into the specified node, moving all links to and // MergeSortedVectors - Efficiently merge a vector into another vector where
// from the argument node into the current node. The specified node may be a // duplicates are not allowed and both are sorted. This assumes that 'T's are
// null pointer (in which case, nothing happens). // efficiently copyable and have sane comparison semantics.
// //
void DSNode::mergeWith(DSNode *N) { template<typename T>
if (N == 0 || N == this) return; // Noop void MergeSortedVectors(vector<T> &Dest, const vector<T> &Src) {
assert(N->Ty == Ty && N->Links.size() == Links.size() && // By far, the most common cases will be the simple ones. In these cases,
"Cannot merge nodes of two different types!"); // avoid having to allocate a temporary vector...
//
if (Src.empty()) { // Nothing to merge in...
return;
} else if (Dest.empty()) { // Just copy the result in...
Dest = Src;
} else if (Src.size() == 1) { // Insert a single element...
const T &V = Src[0];
typename vector<T>::iterator I =
std::lower_bound(Dest.begin(), Dest.end(), V);
if (I == Dest.end() || *I != Src[0]) // If not already contained...
Dest.insert(I, Src[0]);
} else if (Dest.size() == 1) {
T Tmp = Dest[0]; // Save value in temporary...
Dest = Src; // Copy over list...
typename vector<T>::iterator I =
std::lower_bound(Dest.begin(), Dest.end(),Tmp);
if (I == Dest.end() || *I != Src[0]) // If not already contained...
Dest.insert(I, Src[0]);
} else {
// Make a copy to the side of Dest...
vector<T> Old(Dest);
// Make space for all of the type entries now...
Dest.resize(Dest.size()+Src.size());
// Merge the two sorted ranges together... into Dest.
std::merge(Old.begin(), Old.end(), Src.begin(), Src.end(), Dest.begin());
// Now erase any duplicate entries that may have accumulated into the
// vectors (because they were in both of the input sets)
Dest.erase(std::unique(Dest.begin(), Dest.end()), Dest.end());
}
}
// mergeWith - Merge this node and the specified node, moving all links to and
// from the argument node into the current node, deleting the node argument.
// Offset indicates what offset the specified node is to be merged into the
// current node.
//
// The specified node may be a null pointer (in which case, nothing happens).
//
void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) {
DSNode *N = NH.getNode();
if (N == 0 || (N == this && NH.getOffset() == Offset))
return; // Noop
assert(NH.getNode() != this &&
"Cannot merge two portions of the same node yet!");
// If both nodes are not at offset 0, make sure that we are merging the node
// at an later offset into the node with the zero offset.
//
if (Offset > NH.getOffset()) {
N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
return;
}
#if 0
std::cerr << "\n\nMerging:\n";
N->print(std::cerr, 0);
std::cerr << " and:\n";
print(std::cerr, 0);
#endif
// Now we know that Offset <= NH.Offset, so convert it so our "Offset" (with
// respect to NH.Offset) is now zero.
//
unsigned NOffset = NH.getOffset()-Offset;
// Remove all edges pointing at N, causing them to point to 'this' instead. // Remove all edges pointing at N, causing them to point to 'this' instead.
while (!N->Referrers.empty()) // Make sure to adjust their offset, not just the node pointer.
*N->Referrers.back() = this; //
while (!N->Referrers.empty()) {
DSNodeHandle &Ref = *N->Referrers.back();
Ref = DSNodeHandle(this, NOffset+Ref.getOffset());
}
// Make all of the outgoing links of N now be outgoing links of this. This // Make all of the outgoing links of N now be outgoing links of this. This
// can cause recursive merging! // can cause recursive merging!
// //
for (unsigned i = 0, e = Links.size(); i != e; ++i) { for (unsigned i = 0, e = N->LinkIndex.size(); i != e; ++i)
addEdgeTo(i, N->Links[i]); if (N->LinkIndex[i] != -1) {
N->Links[i] = 0; // Reduce unneccesary edges in graph. N is dead addEdgeTo(i+NOffset, N->Links[N->LinkIndex[i]]);
} N->LinkIndex[i] = -1; // Reduce unneccesary edges in graph. N is dead
}
// Now that there are no outgoing edges, all of the Links are dead.
N->Links.clear();
// Merge the node types // Merge the node types
NodeType |= N->NodeType; NodeType |= N->NodeType;
N->NodeType = 0; // N is now a dead node. N->NodeType = 0; // N is now a dead node.
// If this merging into node has more than just void nodes in it, merge!
assert(!N->TypeEntries.empty() && "TypeEntries is empty for a node?");
if (N->TypeEntries.size() != 1 || N->TypeEntries[0].first != Type::VoidTy) {
// If the current node just has a Void entry in it, remove it.
if (TypeEntries.size() == 1 && TypeEntries[0].first == Type::VoidTy)
TypeEntries.clear();
// Adjust all of the type entries we are merging in by the offset... and add
// them to the TypeEntries list.
//
if (NOffset != 0) { // This case is common enough to optimize for
// Offset all of the TypeEntries in N with their new offset
for (unsigned i = 0, e = N->TypeEntries.size(); i != e; ++i)
N->TypeEntries[i].second += NOffset;
}
MergeSortedVectors(TypeEntries, N->TypeEntries);
N->TypeEntries.clear();
}
// Merge the globals list... // Merge the globals list...
if (!N->Globals.empty()) { if (!N->Globals.empty()) {
// Save the current globals off to the side... MergeSortedVectors(Globals, N->Globals);
vector<GlobalValue*> OldGlobals(Globals);
// Resize the globals vector to be big enough to hold both of them...
Globals.resize(Globals.size()+N->Globals.size());
// Merge the two sorted globals lists together...
std::merge(OldGlobals.begin(), OldGlobals.end(),
N->Globals.begin(), N->Globals.end(), Globals.begin());
// Erase duplicate entries from the globals list...
Globals.erase(std::unique(Globals.begin(), Globals.end()), Globals.end());
// Delete the globals from the old node... // Delete the globals from the old node...
N->Globals.clear(); N->Globals.clear();
@@ -125,16 +229,13 @@ void DSNode::mergeWith(DSNode *N) {
// DSGraph Implementation // DSGraph Implementation
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
DSGraph::DSGraph(const DSGraph &G) : Func(G.Func), GlobalsGraph(G.GlobalsGraph){ DSGraph::DSGraph(const DSGraph &G) : Func(G.Func) {
GlobalsGraph->addReference(this); std::map<const DSNode*, DSNode*> NodeMap;
std::map<const DSNode*, DSNode*> NodeMap; // ignored
RetNode = cloneInto(G, ValueMap, NodeMap); RetNode = cloneInto(G, ValueMap, NodeMap);
} }
DSGraph::~DSGraph() { DSGraph::~DSGraph() {
GlobalsGraph->removeReference(this);
FunctionCalls.clear(); FunctionCalls.clear();
OrigFunctionCalls.clear();
ValueMap.clear(); ValueMap.clear();
RetNode = 0; RetNode = 0;
@@ -151,24 +252,31 @@ DSGraph::~DSGraph() {
// dump - Allow inspection of graph in a debugger. // dump - Allow inspection of graph in a debugger.
void DSGraph::dump() const { print(std::cerr); } void DSGraph::dump() const { print(std::cerr); }
// Helper function used to clone a function list. // Helper function used to clone a function list.
// Each call really shd have an explicit representation as a separate class. //
void static void CopyFunctionCallsList(const vector<vector<DSNodeHandle> >&fromCalls,
CopyFunctionCallsList(const std::vector<std::vector<DSNodeHandle> >& fromCalls, vector<vector<DSNodeHandle> > &toCalls,
std::vector<std::vector<DSNodeHandle> >& toCalls, std::map<const DSNode*, DSNode*> &NodeMap) {
std::map<const DSNode*, DSNode*>& NodeMap) {
unsigned FC = toCalls.size(); // FirstCall unsigned FC = toCalls.size(); // FirstCall
toCalls.reserve(FC+fromCalls.size()); toCalls.reserve(FC+fromCalls.size());
for (unsigned i = 0, ei = fromCalls.size(); i != ei; ++i) { for (unsigned i = 0, ei = fromCalls.size(); i != ei; ++i) {
toCalls.push_back(std::vector<DSNodeHandle>()); toCalls.push_back(vector<DSNodeHandle>());
toCalls[FC+i].reserve(fromCalls[i].size());
const vector<DSNodeHandle> &CurCall = fromCalls[i];
toCalls.back().reserve(CurCall.size());
for (unsigned j = 0, ej = fromCalls[i].size(); j != ej; ++j) for (unsigned j = 0, ej = fromCalls[i].size(); j != ej; ++j)
toCalls[FC+i].push_back(NodeMap[fromCalls[i][j]]); toCalls[FC+i].push_back(DSNodeHandle(NodeMap[CurCall[j].getNode()],
CurCall[j].getOffset()));
} }
} }
/// remapLinks - Change all of the Links in the current node according to the
/// specified mapping.
void DSNode::remapLinks(std::map<const DSNode*, DSNode*> &OldNodeMap) {
for (unsigned i = 0, e = Links.size(); i != e; ++i)
Links[i].setNode(OldNodeMap[Links[i].getNode()]);
}
// cloneInto - Clone the specified DSGraph into the current graph, returning the // cloneInto - Clone the specified DSGraph into the current graph, returning the
// Return node of the graph. The translated ValueMap for the old function is // Return node of the graph. The translated ValueMap for the old function is
@@ -176,62 +284,61 @@ CopyFunctionCallsList(const std::vector<std::vector<DSNodeHandle> >& fromCalls,
// Alloca markers are removed from the graph, as the graph is being cloned into // Alloca markers are removed from the graph, as the graph is being cloned into
// a calling function's graph. // a calling function's graph.
// //
DSNode *DSGraph::cloneInto(const DSGraph &G, DSNodeHandle DSGraph::cloneInto(const DSGraph &G,
std::map<Value*, DSNodeHandle> &OldValMap, std::map<Value*, DSNodeHandle> &OldValMap,
std::map<const DSNode*, DSNode*> &OldNodeMap, std::map<const DSNode*, DSNode*> &OldNodeMap,
bool StripScalars, bool StripAllocas, bool StripScalars, bool StripAllocas,
bool CopyCallers, bool CopyOrigCalls) { bool CopyCallers, bool CopyOrigCalls) {
assert(OldNodeMap.empty() && "Returned OldNodeMap should be empty!");
assert(OldNodeMap.size()==0 && "Return arg. OldNodeMap shd be empty");
OldNodeMap[0] = 0; // Null pointer maps to null
unsigned FN = Nodes.size(); // First new node... unsigned FN = Nodes.size(); // First new node...
// Duplicate all of the nodes, populating the node map... // Duplicate all of the nodes, populating the node map...
Nodes.reserve(FN+G.Nodes.size()); Nodes.reserve(FN+G.Nodes.size());
for (unsigned i = 0, e = G.Nodes.size(); i != e; ++i) { for (unsigned i = 0, e = G.Nodes.size(); i != e; ++i) {
DSNode *Old = G.Nodes[i], *New = new DSNode(*Old); DSNode *Old = G.Nodes[i];
DSNode *New = new DSNode(*Old);
Nodes.push_back(New); Nodes.push_back(New);
OldNodeMap[Old] = New; OldNodeMap[Old] = New;
} }
// Rewrite the links in the new nodes to point into the current graph now. // Rewrite the links in the new nodes to point into the current graph now.
for (unsigned i = FN, e = Nodes.size(); i != e; ++i) for (unsigned i = FN, e = Nodes.size(); i != e; ++i)
for (unsigned j = 0, e = Nodes[i]->getNumLinks(); j != e; ++j) Nodes[i]->remapLinks(OldNodeMap);
Nodes[i]->setLink(j, OldNodeMap.find(Nodes[i]->getLink(j))->second);
// Remove local markers as specified // Remove local markers as specified
if (StripScalars || StripAllocas) { unsigned char StripBits = (StripScalars ? DSNode::ScalarNode : 0) |
char keepBits = ~((StripScalars? DSNode::ScalarNode : 0) | (StripAllocas ? DSNode::AllocaNode : 0);
(StripAllocas? DSNode::AllocaNode : 0)); if (StripBits)
for (unsigned i = FN, e = Nodes.size(); i != e; ++i) for (unsigned i = FN, e = Nodes.size(); i != e; ++i)
Nodes[i]->NodeType &= keepBits; Nodes[i]->NodeType &= ~StripBits;
}
// Copy the value map... // Copy the value map...
for (std::map<Value*, DSNodeHandle>::const_iterator I = G.ValueMap.begin(), for (std::map<Value*, DSNodeHandle>::const_iterator I = G.ValueMap.begin(),
E = G.ValueMap.end(); I != E; ++I) E = G.ValueMap.end(); I != E; ++I)
OldValMap[I->first] = OldNodeMap[I->second]; OldValMap[I->first] = DSNodeHandle(OldNodeMap[I->second.getNode()],
I->second.getOffset());
// Copy the function calls list... // Copy the function calls list...
CopyFunctionCallsList(G.FunctionCalls, FunctionCalls, OldNodeMap); CopyFunctionCallsList(G.FunctionCalls, FunctionCalls, OldNodeMap);
#if 0
if (CopyOrigCalls) if (CopyOrigCalls)
CopyFunctionCallsList(G.OrigFunctionCalls, OrigFunctionCalls, OldNodeMap); CopyFunctionCallsList(G.OrigFunctionCalls, OrigFunctionCalls, OldNodeMap);
// Copy the list of unresolved callers // Copy the list of unresolved callers
if (CopyCallers) if (CopyCallers)
PendingCallers.insert(G.PendingCallers.begin(), G.PendingCallers.end()); PendingCallers.insert(G.PendingCallers.begin(), G.PendingCallers.end());
#endif
// Return the returned node pointer... // Return the returned node pointer...
return OldNodeMap[G.RetNode]; return DSNodeHandle(OldNodeMap[G.RetNode.getNode()], G.RetNode.getOffset());
} }
#if 0
// cloneGlobalInto - Clone the given global node and all its target links // cloneGlobalInto - Clone the given global node and all its target links
// (and all their llinks, recursively). // (and all their llinks, recursively).
// //
DSNode* DSGraph::cloneGlobalInto(const DSNode* GNode) { DSNode *DSGraph::cloneGlobalInto(const DSNode *GNode) {
if (GNode == 0 || GNode->getGlobals().size() == 0) return 0; if (GNode == 0 || GNode->getGlobals().size() == 0) return 0;
// If a clone has already been created for GNode, return it. // If a clone has already been created for GNode, return it.
@@ -252,6 +359,7 @@ DSNode* DSGraph::cloneGlobalInto(const DSNode* GNode) {
return NewNode; return NewNode;
} }
#endif
// markIncompleteNodes - Mark the specified node as having contents that are not // markIncompleteNodes - Mark the specified node as having contents that are not
@@ -268,8 +376,9 @@ static void markIncompleteNode(DSNode *N) {
N->NodeType |= DSNode::Incomplete; N->NodeType |= DSNode::Incomplete;
// Recusively process children... // Recusively process children...
for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i) for (unsigned i = 0, e = N->getSize(); i != e; ++i)
markIncompleteNode(N->getLink(i)); if (DSNodeHandle *DSNH = N->getLink(i))
markIncompleteNode(DSNH->getNode());
} }
@@ -285,37 +394,41 @@ static void markIncompleteNode(DSNode *N) {
// //
void DSGraph::markIncompleteNodes(bool markFormalArgs) { void DSGraph::markIncompleteNodes(bool markFormalArgs) {
// Mark any incoming arguments as incomplete... // Mark any incoming arguments as incomplete...
if (markFormalArgs) if (markFormalArgs && Func)
for (Function::aiterator I = Func.abegin(), E = Func.aend(); I != E; ++I) for (Function::aiterator I = Func->abegin(), E = Func->aend(); I != E; ++I)
if (isa<PointerType>(I->getType())) if (isPointerType(I->getType()) && ValueMap.find(I) != ValueMap.end()) {
markIncompleteNode(ValueMap[I]->getLink(0)); DSNodeHandle &INH = ValueMap[I];
if (INH.getNode() && INH.hasLink(0))
markIncompleteNode(ValueMap[I].getLink(0)->getNode());
}
// Mark stuff passed into functions calls as being incomplete... // Mark stuff passed into functions calls as being incomplete...
for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) { for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) {
vector<DSNodeHandle> &Args = FunctionCalls[i]; vector<DSNodeHandle> &Args = FunctionCalls[i];
// Then the return value is certainly incomplete! // Then the return value is certainly incomplete!
markIncompleteNode(Args[0]); markIncompleteNode(Args[0].getNode());
// The call does not make the function argument incomplete... // The call does not make the function argument incomplete...
// All arguments to the function call are incomplete though! // All arguments to the function call are incomplete though!
for (unsigned i = 2, e = Args.size(); i != e; ++i) for (unsigned i = 2, e = Args.size(); i != e; ++i)
markIncompleteNode(Args[i]); markIncompleteNode(Args[i].getNode());
} }
// Mark all of the nodes pointed to by global or cast nodes as incomplete... // Mark all of the nodes pointed to by global or cast nodes as incomplete...
for (unsigned i = 0, e = Nodes.size(); i != e; ++i) for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
if (Nodes[i]->NodeType & (DSNode::GlobalNode | DSNode::CastNode)) { if (Nodes[i]->NodeType & DSNode::GlobalNode) {
DSNode *N = Nodes[i]; DSNode *N = Nodes[i];
for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i) for (unsigned i = 0, e = N->getSize(); i != e; ++i)
markIncompleteNode(N->getLink(i)); if (DSNodeHandle *DSNH = N->getLink(i))
markIncompleteNode(DSNH->getNode());
} }
} }
// removeRefsToGlobal - Helper function that removes globals from the // removeRefsToGlobal - Helper function that removes globals from the
// ValueMap so that the referrer count will go down to zero. // ValueMap so that the referrer count will go down to zero.
static void static void removeRefsToGlobal(DSNode* N,
removeRefsToGlobal(DSNode* N, std::map<Value*, DSNodeHandle>& ValueMap) { std::map<Value*, DSNodeHandle> &ValueMap) {
while (!N->getGlobals().empty()) { while (!N->getGlobals().empty()) {
GlobalValue *GV = N->getGlobals().back(); GlobalValue *GV = N->getGlobals().back();
N->getGlobals().pop_back(); N->getGlobals().pop_back();
@@ -336,7 +449,7 @@ bool DSGraph::isNodeDead(DSNode *N) {
// Is it a function node or some other trivially unused global? // Is it a function node or some other trivially unused global?
if (N->NodeType != 0 && if (N->NodeType != 0 &&
(N->NodeType & ~DSNode::GlobalNode) == 0 && (N->NodeType & ~DSNode::GlobalNode) == 0 &&
N->getNumLinks() == 0 && N->getSize() == 0 &&
N->getReferrers().size() == N->getGlobals().size()) { N->getReferrers().size() == N->getGlobals().size()) {
// Remove the globals from the valuemap, so that the referrer count will go // Remove the globals from the valuemap, so that the referrer count will go
@@ -349,7 +462,7 @@ bool DSGraph::isNodeDead(DSNode *N) {
return false; return false;
} }
static void removeIdenticalCalls(std::vector<std::vector<DSNodeHandle> > &Calls, static void removeIdenticalCalls(vector<vector<DSNodeHandle> > &Calls,
const std::string &where) { const std::string &where) {
// Remove trivially identical function calls // Remove trivially identical function calls
unsigned NumFns = Calls.size(); unsigned NumFns = Calls.size();
@@ -375,38 +488,44 @@ void DSGraph::removeTriviallyDeadNodes(bool KeepAllGlobals) {
Nodes.erase(Nodes.begin()+i--); // Remove from node list... Nodes.erase(Nodes.begin()+i--); // Remove from node list...
} }
removeIdenticalCalls(FunctionCalls, Func.getName()); removeIdenticalCalls(FunctionCalls, Func ? Func->getName() : "");
} }
// markAlive - Simple graph traverser that recursively walks the graph marking // markAlive - Simple graph walker that recursively traverses the graph, marking
// stuff to be alive. // stuff to be alive.
// //
static void markAlive(DSNode *N, std::set<DSNode*> &Alive) { static void markAlive(DSNode *N, std::set<DSNode*> &Alive) {
if (N == 0) return; if (N == 0) return;
Alive.insert(N); Alive.insert(N);
for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i) for (unsigned i = 0, e = N->getSize(); i != e; ++i)
if (N->getLink(i) && !Alive.count(N->getLink(i))) if (DSNodeHandle *DSNH = N->getLink(i))
markAlive(N->getLink(i), Alive); if (!Alive.count(DSNH->getNode()))
markAlive(DSNH->getNode(), Alive);
} }
static bool checkGlobalAlive(DSNode *N, std::set<DSNode*> &Alive, static bool checkGlobalAlive(DSNode *N, std::set<DSNode*> &Alive,
std::set<DSNode*> &Visiting) { std::set<DSNode*> &Visiting) {
if (N == 0) return false; if (N == 0) return false;
if (Visiting.count(N) > 0) return false; // terminate recursion on a cycle if (Visiting.count(N)) return false; // terminate recursion on a cycle
Visiting.insert(N); Visiting.insert(N);
// If any immediate successor is alive, N is alive // If any immediate successor is alive, N is alive
for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i) for (unsigned i = 0, e = N->getSize(); i != e; ++i)
if (N->getLink(i) && Alive.count(N->getLink(i))) if (DSNodeHandle *DSNH = N->getLink(i))
{ Visiting.erase(N); return true; } if (Alive.count(DSNH->getNode())) {
Visiting.erase(N);
return true;
}
// Else if any successor reaches a live node, N is alive // Else if any successor reaches a live node, N is alive
for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i) for (unsigned i = 0, e = N->getSize(); i != e; ++i)
if (N->getLink(i) && checkGlobalAlive(N->getLink(i), Alive, Visiting)) if (DSNodeHandle *DSNH = N->getLink(i))
{ Visiting.erase(N); return true; } if (checkGlobalAlive(DSNH->getNode(), Alive, Visiting)) {
Visiting.erase(N); return true;
}
Visiting.erase(N); Visiting.erase(N);
return false; return false;
@@ -418,7 +537,7 @@ static bool checkGlobalAlive(DSNode *N, std::set<DSNode*> &Alive,
// the simple iterative loop in the first few lines below suffice. // the simple iterative loop in the first few lines below suffice.
// //
static void markGlobalsIteration(std::set<DSNode*>& GlobalNodes, static void markGlobalsIteration(std::set<DSNode*>& GlobalNodes,
std::vector<std::vector<DSNodeHandle> > &Calls, vector<vector<DSNodeHandle> > &Calls,
std::set<DSNode*> &Alive, std::set<DSNode*> &Alive,
bool FilterCalls) { bool FilterCalls) {
@@ -444,16 +563,17 @@ static void markGlobalsIteration(std::set<DSNode*>& GlobalNodes,
for (int i = 0, ei = Calls.size(); i < ei; ++i) { for (int i = 0, ei = Calls.size(); i < ei; ++i) {
bool CallIsDead = true, CallHasDeadArg = false; bool CallIsDead = true, CallHasDeadArg = false;
for (unsigned j = 0, ej = Calls[i].size(); j != ej; ++j) { for (unsigned j = 0, ej = Calls[i].size(); j != ej; ++j) {
bool argIsDead = Calls[i][j] == 0 || Alive.count(Calls[i][j]) == 0; bool argIsDead = Calls[i][j].getNode() == 0 ||
CallHasDeadArg = CallHasDeadArg || (Calls[i][j] != 0 && argIsDead); Alive.count(Calls[i][j].getNode()) == 0;
CallIsDead = CallIsDead && argIsDead; CallHasDeadArg |= (Calls[i][j].getNode() != 0 && argIsDead);
CallIsDead &= argIsDead;
} }
if (!CallIsDead && CallHasDeadArg) { if (!CallIsDead && CallHasDeadArg) {
// Some node in this call is live and another is dead. // Some node in this call is live and another is dead.
// Mark all nodes of call as live and iterate once more. // Mark all nodes of call as live and iterate once more.
recurse = true; recurse = true;
for (unsigned j = 0, ej = Calls[i].size(); j != ej; ++j) for (unsigned j = 0, ej = Calls[i].size(); j != ej; ++j)
markAlive(Calls[i][j], Alive); markAlive(Calls[i][j].getNode(), Alive);
} }
} }
if (recurse) if (recurse)
@@ -466,21 +586,21 @@ static void markGlobalsIteration(std::set<DSNode*>& GlobalNodes,
// can reach any other live node. Since this can produce new live nodes, // can reach any other live node. Since this can produce new live nodes,
// we use a simple iterative algorithm. // we use a simple iterative algorithm.
// //
static void markGlobalsAlive(DSGraph& G, std::set<DSNode*> &Alive, static void markGlobalsAlive(DSGraph &G, std::set<DSNode*> &Alive,
bool FilterCalls) { bool FilterCalls) {
// Add global and cast nodes to a set so we don't walk all nodes every time // Add global and cast nodes to a set so we don't walk all nodes every time
std::set<DSNode*> GlobalNodes; std::set<DSNode*> GlobalNodes;
for (unsigned i = 0, e = G.getNodes().size(); i != e; ++i) for (unsigned i = 0, e = G.getNodes().size(); i != e; ++i)
if (G.getNodes()[i]->NodeType & (DSNode::CastNode | DSNode::GlobalNode)) if (G.getNodes()[i]->NodeType & DSNode::GlobalNode)
GlobalNodes.insert(G.getNodes()[i]); GlobalNodes.insert(G.getNodes()[i]);
// Add all call nodes to the same set // Add all call nodes to the same set
std::vector<std::vector<DSNodeHandle> > &Calls = G.getFunctionCalls(); vector<vector<DSNodeHandle> > &Calls = G.getFunctionCalls();
if (FilterCalls) { if (FilterCalls) {
for (unsigned i = 0, e = Calls.size(); i != e; ++i) for (unsigned i = 0, e = Calls.size(); i != e; ++i)
for (unsigned j = 0, e = Calls[i].size(); j != e; ++j) for (unsigned j = 0, e = Calls[i].size(); j != e; ++j)
if (Calls[i][j]) if (Calls[i][j].getNode())
GlobalNodes.insert(Calls[i][j]); GlobalNodes.insert(Calls[i][j].getNode());
} }
// Iterate and recurse until no new live node are discovered. // Iterate and recurse until no new live node are discovered.
@@ -497,8 +617,8 @@ static void markGlobalsAlive(DSGraph& G, std::set<DSNode*> &Alive,
if (FilterCalls) if (FilterCalls)
for (int ei = Calls.size(), i = ei-1; i >= 0; --i) { for (int ei = Calls.size(), i = ei-1; i >= 0; --i) {
bool CallIsDead = true; bool CallIsDead = true;
for (unsigned j = 0, ej= Calls[i].size(); CallIsDead && j != ej; ++j) for (unsigned j = 0, ej = Calls[i].size(); CallIsDead && j != ej; ++j)
CallIsDead = (Alive.count(Calls[i][j]) == 0); CallIsDead = Alive.count(Calls[i][j].getNode()) == 0;
if (CallIsDead) if (CallIsDead)
Calls.erase(Calls.begin() + i); // remove the call entirely Calls.erase(Calls.begin() + i); // remove the call entirely
} }
@@ -526,21 +646,24 @@ void DSGraph::removeDeadNodes(bool KeepAllGlobals, bool KeepCalls) {
if (KeepCalls) if (KeepCalls)
for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i)
for (unsigned j = 0, e = FunctionCalls[i].size(); j != e; ++j) for (unsigned j = 0, e = FunctionCalls[i].size(); j != e; ++j)
markAlive(FunctionCalls[i][j], Alive); markAlive(FunctionCalls[i][j].getNode(), Alive);
#if 0
for (unsigned i = 0, e = OrigFunctionCalls.size(); i != e; ++i) for (unsigned i = 0, e = OrigFunctionCalls.size(); i != e; ++i)
for (unsigned j = 0, e = OrigFunctionCalls[i].size(); j != e; ++j) for (unsigned j = 0, e = OrigFunctionCalls[i].size(); j != e; ++j)
markAlive(OrigFunctionCalls[i][j], Alive); markAlive(OrigFunctionCalls[i][j].getNode(), Alive);
#endif
// Mark all nodes reachable by scalar nodes (and global nodes, if // Mark all nodes reachable by scalar nodes (and global nodes, if
// keeping them was specified) as alive... // keeping them was specified) as alive...
char keepBits = DSNode::ScalarNode | (KeepAllGlobals? DSNode::GlobalNode : 0); unsigned char keepBits = DSNode::ScalarNode |
(KeepAllGlobals ? DSNode::GlobalNode : 0);
for (unsigned i = 0, e = Nodes.size(); i != e; ++i) for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
if (Nodes[i]->NodeType & keepBits) if (Nodes[i]->NodeType & keepBits)
markAlive(Nodes[i], Alive); markAlive(Nodes[i], Alive);
// The return value is alive as well... // The return value is alive as well...
markAlive(RetNode, Alive); markAlive(RetNode.getNode(), Alive);
// Mark all globals or cast nodes that can reach a live node as alive. // Mark all globals or cast nodes that can reach a live node as alive.
// This also marks all nodes reachable from such nodes as alive. // This also marks all nodes reachable from such nodes as alive.
@@ -549,7 +672,7 @@ void DSGraph::removeDeadNodes(bool KeepAllGlobals, bool KeepCalls) {
markGlobalsAlive(*this, Alive, ! KeepCalls); markGlobalsAlive(*this, Alive, ! KeepCalls);
// Loop over all unreachable nodes, dropping their references... // Loop over all unreachable nodes, dropping their references...
std::vector<DSNode*> DeadNodes; vector<DSNode*> DeadNodes;
DeadNodes.reserve(Nodes.size()); // Only one allocation is allowed. DeadNodes.reserve(Nodes.size()); // Only one allocation is allowed.
for (unsigned i = 0; i != Nodes.size(); ++i) for (unsigned i = 0; i != Nodes.size(); ++i)
if (!Alive.count(Nodes[i])) { if (!Alive.count(Nodes[i])) {
@@ -574,6 +697,7 @@ void DSGraph::maskNodeTypes(unsigned char Mask) {
} }
#if 0
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// GlobalDSGraph Implementation // GlobalDSGraph Implementation
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
@@ -601,10 +725,9 @@ void GlobalDSGraph::removeReference(const DSGraph* referrer) {
} }
// Bits used in the next function // Bits used in the next function
static const char ExternalTypeBits = (DSNode::GlobalNode | DSNode::NewNode | static const char ExternalTypeBits = DSNode::GlobalNode | DSNode::NewNode;
DSNode::SubElement | DSNode::CastNode);
#if 0
// GlobalDSGraph::cloneNodeInto - Clone a global node and all its externally // GlobalDSGraph::cloneNodeInto - Clone a global node and all its externally
// visible target links (and recursively their such links) into this graph. // visible target links (and recursively their such links) into this graph.
// NodeCache maps the node being cloned to its clone in the Globals graph, // NodeCache maps the node being cloned to its clone in the Globals graph,
@@ -635,8 +758,8 @@ DSNode* GlobalDSGraph::cloneNodeInto(DSNode *OldNode,
// If ValueCacheIsFinal==true, look for an existing node that has // If ValueCacheIsFinal==true, look for an existing node that has
// an identical list of globals and return it if it exists. // an identical list of globals and return it if it exists.
// //
for (unsigned j = 0, N = OldNode->getGlobals().size(); j < N; ++j) for (unsigned j = 0, N = OldNode->getGlobals().size(); j != N; ++j)
if (DSNode* PrevNode = ValueMap[OldNode->getGlobals()[j]]) { if (DSNode *PrevNode = ValueMap[OldNode->getGlobals()[j]].getNode()) {
if (NewNode == 0) { if (NewNode == 0) {
NewNode = PrevNode; // first existing node found NewNode = PrevNode; // first existing node found
if (GlobalsAreFinal && j == 0) if (GlobalsAreFinal && j == 0)
@@ -695,14 +818,15 @@ DSNode* GlobalDSGraph::cloneNodeInto(DSNode *OldNode,
// //
void GlobalDSGraph::cloneGlobals(DSGraph& Graph, bool CloneCalls) { void GlobalDSGraph::cloneGlobals(DSGraph& Graph, bool CloneCalls) {
std::map<const DSNode*, DSNode*> NodeCache; std::map<const DSNode*, DSNode*> NodeCache;
#if 0
for (unsigned i = 0, N = Graph.Nodes.size(); i < N; ++i) for (unsigned i = 0, N = Graph.Nodes.size(); i < N; ++i)
if (Graph.Nodes[i]->NodeType & DSNode::GlobalNode) if (Graph.Nodes[i]->NodeType & DSNode::GlobalNode)
GlobalsGraph->cloneNodeInto(Graph.Nodes[i], NodeCache, false); GlobalsGraph->cloneNodeInto(Graph.Nodes[i], NodeCache, false);
if (CloneCalls) if (CloneCalls)
GlobalsGraph->cloneCalls(Graph); GlobalsGraph->cloneCalls(Graph);
GlobalsGraph->removeDeadNodes(/*KeepAllGlobals*/ true, /*KeepCalls*/ true); GlobalsGraph->removeDeadNodes(/*KeepAllGlobals*/ true, /*KeepCalls*/ true);
#endif
} }
@@ -711,12 +835,12 @@ void GlobalDSGraph::cloneGlobals(DSGraph& Graph, bool CloneCalls) {
// //
void GlobalDSGraph::cloneCalls(DSGraph& Graph) { void GlobalDSGraph::cloneCalls(DSGraph& Graph) {
std::map<const DSNode*, DSNode*> NodeCache; std::map<const DSNode*, DSNode*> NodeCache;
std::vector<std::vector<DSNodeHandle> >& FromCalls =Graph.FunctionCalls; vector<vector<DSNodeHandle> >& FromCalls =Graph.FunctionCalls;
FunctionCalls.reserve(FunctionCalls.size() + FromCalls.size()); FunctionCalls.reserve(FunctionCalls.size() + FromCalls.size());
for (int i = 0, ei = FromCalls.size(); i < ei; ++i) { for (int i = 0, ei = FromCalls.size(); i < ei; ++i) {
FunctionCalls.push_back(std::vector<DSNodeHandle>()); FunctionCalls.push_back(vector<DSNodeHandle>());
FunctionCalls.back().reserve(FromCalls[i].size()); FunctionCalls.back().reserve(FromCalls[i].size());
for (unsigned j = 0, ej = FromCalls[i].size(); j != ej; ++j) for (unsigned j = 0, ej = FromCalls[i].size(); j != ej; ++j)
FunctionCalls.back().push_back FunctionCalls.back().push_back
@@ -728,34 +852,6 @@ void GlobalDSGraph::cloneCalls(DSGraph& Graph) {
// remove trivially identical function calls // remove trivially identical function calls
removeIdenticalCalls(FunctionCalls, "Globals Graph"); removeIdenticalCalls(FunctionCalls, "Globals Graph");
} }
#endif
#endif
//===----------------------------------------------------------------------===//
// LocalDataStructures Implementation
//===----------------------------------------------------------------------===//
// releaseMemory - If the pass pipeline is done with this pass, we can release
// our memory... here...
//
void LocalDataStructures::releaseMemory() {
for (std::map<const Function*, DSGraph*>::iterator I = DSInfo.begin(),
E = DSInfo.end(); I != E; ++I)
delete I->second;
// Empty map so next time memory is released, data structures are not
// re-deleted.
DSInfo.clear();
}
bool LocalDataStructures::run(Module &M) {
// Create a globals graph for the module. Deleted when all graphs go away.
GlobalDSGraph* GG = new GlobalDSGraph;
// Calculate all of the graphs...
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isExternal())
DSInfo.insert(std::make_pair(&*I, new DSGraph(*I, GG)));
return false;
}

View File

@@ -1,4 +1,4 @@
//===- ComputeLocal.cpp - Compute a local data structure graph for a fn ---===// //===- Local.cpp - Compute a local data structure graph for a function ----===//
// //
// Compute the local version of the data structure graph for a function. The // Compute the local version of the data structure graph for a function. The
// external interface to this file is the DSGraph constructor. // external interface to this file is the DSGraph constructor.
@@ -6,30 +6,55 @@
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
#include "llvm/Analysis/DataStructure.h" #include "llvm/Analysis/DataStructure.h"
#include "llvm/Function.h"
#include "llvm/iMemory.h" #include "llvm/iMemory.h"
#include "llvm/iTerminators.h" #include "llvm/iTerminators.h"
#include "llvm/iPHINode.h" #include "llvm/iPHINode.h"
#include "llvm/iOther.h" #include "llvm/iOther.h"
#include "llvm/Constants.h" #include "llvm/Constants.h"
#include "llvm/GlobalVariable.h"
#include "llvm/DerivedTypes.h" #include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Support/InstVisitor.h" #include "llvm/Support/InstVisitor.h"
#include "llvm/Target/TargetData.h"
#include "Support/Statistic.h"
// FIXME: This should eventually be a FunctionPass that is automatically
// aggregated into a Pass.
//
#include "llvm/Module.h"
using std::map; using std::map;
using std::vector; using std::vector;
static RegisterAnalysis<LocalDataStructures> static RegisterAnalysis<LocalDataStructures>
X("datastructure", "Local Data Structure Analysis"); X("datastructure", "Local Data Structure Analysis");
//===----------------------------------------------------------------------===// using namespace DataStructureAnalysis;
// GraphBuilder Class
//===----------------------------------------------------------------------===// namespace DataStructureAnalysis {
// // FIXME: Do something smarter with target data!
// This class is the builder class that constructs the local data structure TargetData TD("temp-td");
// graph by performing a single pass over the function in question. unsigned PointerSize(TD.getPointerSize());
//
// isPointerType - Return true if this type is big enough to hold a pointer.
bool isPointerType(const Type *Ty) {
if (isa<PointerType>(Ty))
return true;
else if (Ty->isPrimitiveType() && Ty->isInteger())
return Ty->getPrimitiveSize() >= PointerSize;
return false;
}
}
namespace { namespace {
//===--------------------------------------------------------------------===//
// GraphBuilder Class
//===--------------------------------------------------------------------===//
//
/// This class is the builder class that constructs the local data structure
/// graph by performing a single pass over the function in question.
///
class GraphBuilder : InstVisitor<GraphBuilder> { class GraphBuilder : InstVisitor<GraphBuilder> {
DSGraph &G; DSGraph &G;
vector<DSNode*> &Nodes; vector<DSNode*> &Nodes;
@@ -46,8 +71,8 @@ namespace {
// Create scalar nodes for all pointer arguments... // Create scalar nodes for all pointer arguments...
for (Function::aiterator I = G.getFunction().abegin(), for (Function::aiterator I = G.getFunction().abegin(),
E = G.getFunction().aend(); I != E; ++I) E = G.getFunction().aend(); I != E; ++I)
if (isa<PointerType>(I->getType())) if (isPointerType(I->getType()))
getValueNode(*I); getValueDest(*I);
visit(G.getFunction()); // Single pass over the function visit(G.getFunction()); // Single pass over the function
@@ -71,51 +96,51 @@ namespace {
void visitCallInst(CallInst &CI); void visitCallInst(CallInst &CI);
void visitSetCondInst(SetCondInst &SCI) {} // SetEQ & friends are ignored void visitSetCondInst(SetCondInst &SCI) {} // SetEQ & friends are ignored
void visitFreeInst(FreeInst &FI) {} // Ignore free instructions void visitFreeInst(FreeInst &FI) {} // Ignore free instructions
void visitInstruction(Instruction &I); // Visit unsafe ptr instruction void visitCastInst(CastInst &CI);
void visitInstruction(Instruction &I) {}
private: private:
// Helper functions used to implement the visitation functions... // Helper functions used to implement the visitation functions...
// createNode - Create a new DSNode, ensuring that it is properly added to /// createNode - Create a new DSNode, ensuring that it is properly added to
// the graph. /// the graph.
// ///
DSNode *createNode(DSNode::NodeTy NodeType, const Type *Ty); DSNode *createNode(DSNode::NodeTy NodeType, const Type *Ty);
// getValueNode - Return a DSNode that corresponds the the specified LLVM /// getValueNode - Return a DSNode that corresponds the the specified LLVM
// value. This either returns the already existing node, or creates a new /// value. This either returns the already existing node, or creates a new
// one and adds it to the graph, if none exists. /// one and adds it to the graph, if none exists.
// ///
DSNode *getValueNode(Value &V); DSNodeHandle getValueNode(Value &V);
// getGlobalNode - Just like getValueNode, except the global node itself is /// getValueDest - Return the DSNode that the actual value points to. This
// returned, not a scalar node pointing to a global. /// is basically the same thing as: getLink(getValueNode(V), 0)
// ///
DSNode *getGlobalNode(GlobalValue &V); DSNodeHandle &getValueDest(Value &V);
// getLink - This method is used to either return the specified link in the /// getGlobalNode - Just like getValueNode, except the global node itself is
// specified node if one exists. If a link does not already exist (it's /// returned, not a scalar node pointing to a global.
// null), then we create a new node, link it, then return it. ///
// DSNodeHandle &getGlobalNode(GlobalValue &V);
DSNode *getLink(DSNode *Node, unsigned Link);
// getSubscriptedNode - Perform the basic getelementptr functionality that /// getLink - This method is used to return the specified link in the
// must be factored out of gep, load and store while they are all MAI's. /// specified node if one exists. If a link does not already exist (it's
// /// null), then we create a new node, link it, then return it. We must
DSNode *getSubscriptedNode(GetElementPtrInst &GEP, DSNode *Ptr); /// specify the type of the Node field we are accessing so that we know what
/// type should be linked to if we need to create a new node.
///
DSNodeHandle &getLink(const DSNodeHandle &Node, unsigned Link,
const Type *FieldTy);
}; };
} }
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// DSGraph constructor - Simply use the GraphBuilder to construct the local // DSGraph constructor - Simply use the GraphBuilder to construct the local
// graph. // graph.
DSGraph::DSGraph(Function &F, GlobalDSGraph* GlobalsG) DSGraph::DSGraph(Function &F) : Func(&F) {
: Func(F), RetNode(0), GlobalsGraph(GlobalsG) { // Use the graph builder to construct the local version of the graph
if (GlobalsGraph != this) { GraphBuilder B(*this, Nodes, RetNode, ValueMap, FunctionCalls);
GlobalsGraph->addReference(this); markIncompleteNodes();
// Use the graph builder to construct the local version of the graph
GraphBuilder B(*this, Nodes, RetNode, ValueMap, FunctionCalls);
markIncompleteNodes();
}
} }
@@ -137,9 +162,9 @@ DSNode *GraphBuilder::createNode(DSNode::NodeTy NodeType, const Type *Ty) {
// getGlobalNode - Just like getValueNode, except the global node itself is // getGlobalNode - Just like getValueNode, except the global node itself is
// returned, not a scalar node pointing to a global. // returned, not a scalar node pointing to a global.
// //
DSNode *GraphBuilder::getGlobalNode(GlobalValue &V) { DSNodeHandle &GraphBuilder::getGlobalNode(GlobalValue &V) {
DSNodeHandle &NH = ValueMap[&V]; DSNodeHandle &NH = ValueMap[&V];
if (NH) return NH; // Already have a node? Just return it... if (NH.getNode()) return NH; // Already have a node? Just return it...
// Create a new global node for this global variable... // Create a new global node for this global variable...
DSNode *G = createNode(DSNode::GlobalNode, V.getType()->getElementType()); DSNode *G = createNode(DSNode::GlobalNode, V.getType()->getElementType());
@@ -149,8 +174,8 @@ DSNode *GraphBuilder::getGlobalNode(GlobalValue &V) {
// each use. For functions and other global variables, this is unneccesary, // each use. For functions and other global variables, this is unneccesary,
// so avoid excessive merging by cloning these nodes on demand. // so avoid excessive merging by cloning these nodes on demand.
// //
NH = G; NH.setNode(G);
return G; return NH;
} }
@@ -158,126 +183,145 @@ DSNode *GraphBuilder::getGlobalNode(GlobalValue &V) {
// This either returns the already existing node, or creates a new one and adds // This either returns the already existing node, or creates a new one and adds
// it to the graph, if none exists. // it to the graph, if none exists.
// //
DSNode *GraphBuilder::getValueNode(Value &V) { DSNodeHandle GraphBuilder::getValueNode(Value &V) {
assert(isa<PointerType>(V.getType()) && "Should only use pointer scalars!"); assert(isPointerType(V.getType()) && "Should only use pointer scalars!");
if (!isa<GlobalValue>(V)) { // Do not share the pointer value to globals... this would cause way too much
DSNodeHandle &NH = ValueMap[&V]; // false merging.
if (NH) return NH; // Already have a node? Just return it... //
} DSNodeHandle &NH = ValueMap[&V];
if (!isa<GlobalValue>(V) && NH.getNode())
return NH; // Already have a node? Just return it...
// Otherwise we need to create a new scalar node... // Otherwise we need to create a new scalar node...
DSNode *N = createNode(DSNode::ScalarNode, V.getType()); DSNode *N = createNode(DSNode::ScalarNode, V.getType());
// If this is a global value, create the global pointed to. // If this is a global value, create the global pointed to.
if (GlobalValue *GV = dyn_cast<GlobalValue>(&V)) { if (GlobalValue *GV = dyn_cast<GlobalValue>(&V)) {
DSNode *G = getGlobalNode(*GV); N->addEdgeTo(0, getGlobalNode(*GV));
N->addEdgeTo(G); return DSNodeHandle(N, 0);
} else { } else {
ValueMap[&V] = N; NH.setOffset(0);
NH.setNode(N);
} }
return N; return NH;
}
/// getValueDest - Return the DSNode that the actual value points to. This
/// is basically the same thing as: getLink(getValueNode(V), 0)
///
DSNodeHandle &GraphBuilder::getValueDest(Value &V) {
return getLink(getValueNode(V), 0, V.getType());
} }
// getLink - This method is used to either return the specified link in the
// specified node if one exists. If a link does not already exist (it's
// null), then we create a new node, link it, then return it.
//
DSNode *GraphBuilder::getLink(DSNode *Node, unsigned Link) {
assert(Link < Node->getNumLinks() && "Link accessed out of range!");
if (Node->getLink(Link) == 0) {
DSNode::NodeTy NT;
const Type *Ty;
switch (Node->getType()->getPrimitiveID()) { /// getLink - This method is used to return the specified link in the
case Type::PointerTyID: /// specified node if one exists. If a link does not already exist (it's
Ty = cast<PointerType>(Node->getType())->getElementType(); /// null), then we create a new node, link it, then return it. We must
NT = DSNode::ShadowNode; /// specify the type of the Node field we are accessing so that we know what
break; /// type should be linked to if we need to create a new node.
case Type::ArrayTyID: ///
Ty = cast<ArrayType>(Node->getType())->getElementType(); DSNodeHandle &GraphBuilder::getLink(const DSNodeHandle &node,
NT = DSNode::SubElement; unsigned LinkNo, const Type *FieldTy) {
break; DSNodeHandle &Node = const_cast<DSNodeHandle&>(node);
case Type::StructTyID:
Ty = cast<StructType>(Node->getType())->getContainedType(Link);
NT = DSNode::SubElement;
break;
default:
assert(0 && "Unexpected type to dereference!");
abort();
}
DSNode *New = createNode(NT, Ty); DSNodeHandle *Link = Node.getLink(LinkNo);
Node->addEdgeTo(Link, New); if (Link) return *Link;
}
// If the link hasn't been created yet, make and return a new shadow node of
// the appropriate type for FieldTy...
//
return Node->getLink(Link); // If we are indexing with a typed pointer, then the thing we are pointing
// to is of the pointed type. If we are pointing to it with an integer
// (because of cast to an integer), we represent it with a void type.
//
const Type *ReqTy;
if (const PointerType *Ptr = dyn_cast<PointerType>(FieldTy))
ReqTy = Ptr->getElementType();
else
ReqTy = Type::VoidTy;
DSNode *N = createNode(DSNode::ShadowNode, ReqTy);
Node.setLink(LinkNo, N);
return *Node.getLink(LinkNo);
} }
// getSubscriptedNode - Perform the basic getelementptr functionality that must
// be factored out of gep, load and store while they are all MAI's.
//
DSNode *GraphBuilder::getSubscriptedNode(GetElementPtrInst &GEP, DSNode *Ptr) {
for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i)
if (GEP.getOperand(i)->getType() == Type::UIntTy)
Ptr = getLink(Ptr, 0);
else if (GEP.getOperand(i)->getType() == Type::UByteTy)
Ptr = getLink(Ptr, cast<ConstantUInt>(GEP.getOperand(i))->getValue());
if (GEP.getNumOperands() == 1)
Ptr = getLink(Ptr, 0); // All GEP's have an implicit 0 if nothing else.
return Ptr;
}
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// Specific instruction type handler implementations... // Specific instruction type handler implementations...
// //
// Alloca & Malloc instruction implementation - Simply create a new memory /// Alloca & Malloc instruction implementation - Simply create a new memory
// object, pointing the scalar to it. /// object, pointing the scalar to it.
// ///
void GraphBuilder::handleAlloc(AllocationInst &AI, DSNode::NodeTy NodeType) { void GraphBuilder::handleAlloc(AllocationInst &AI, DSNode::NodeTy NodeType) {
DSNode *Scalar = getValueNode(AI);
DSNode *New = createNode(NodeType, AI.getAllocatedType()); DSNode *New = createNode(NodeType, AI.getAllocatedType());
Scalar->addEdgeTo(New); // Make the scalar point to the new node...
// Make the scalar point to the new node...
getValueNode(AI).addEdgeTo(New);
} }
// PHINode - Make the scalar for the PHI node point to all of the things the // PHINode - Make the scalar for the PHI node point to all of the things the
// incoming values point to... which effectively causes them to be merged. // incoming values point to... which effectively causes them to be merged.
// //
void GraphBuilder::visitPHINode(PHINode &PN) { void GraphBuilder::visitPHINode(PHINode &PN) {
if (!isa<PointerType>(PN.getType())) return; // Only pointer PHIs if (!isPointerType(PN.getType())) return; // Only pointer PHIs
DSNode *Scalar = getValueNode(PN); DSNodeHandle &ScalarDest = getValueDest(PN);
DSNode *ScalarDest = getLink(Scalar, 0);
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
ScalarDest->mergeWith(getLink(getValueNode(*PN.getIncomingValue(i)), 0)); if (!isa<ConstantPointerNull>(PN.getIncomingValue(i)))
ScalarDest.mergeWith(getValueDest(*PN.getIncomingValue(i)));
} }
void GraphBuilder::visitGetElementPtrInst(GetElementPtrInst &GEP) { void GraphBuilder::visitGetElementPtrInst(GetElementPtrInst &GEP) {
DSNode *Ptr = getSubscriptedNode(GEP, getValueNode(*GEP.getOperand(0))); DSNodeHandle Value = getValueDest(*GEP.getOperand(0));
getValueNode(GEP)->addEdgeTo(Ptr);
unsigned Offset = 0;
const Type *CurTy = GEP.getOperand(0)->getType();
for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i)
if (GEP.getOperand(i)->getType() == Type::LongTy) {
if (GEP.getOperand(i) != Constant::getNullValue(Type::LongTy)) {
std::cerr << "Array indexing not handled yet!\n";
}
CurTy = cast<SequentialType>(CurTy)->getElementType();
} else if (GEP.getOperand(i)->getType() == Type::UByteTy) {
unsigned FieldNo = cast<ConstantUInt>(GEP.getOperand(i))->getValue();
const StructType *STy = cast<StructType>(CurTy);
Offset += TD.getStructLayout(STy)->MemberOffsets[FieldNo];
CurTy = STy->getContainedType(FieldNo);
}
// Add in the offset calculated...
Value.setOffset(Value.getOffset()+Offset);
// Value is now the pointer we want to GEP to be...
getValueNode(GEP).addEdgeTo(Value);
} }
void GraphBuilder::visitLoadInst(LoadInst &LI) { void GraphBuilder::visitLoadInst(LoadInst &LI) {
DSNode *Ptr = getValueNode(*LI.getOperand(0)); DSNodeHandle &Ptr = getValueDest(*LI.getOperand(0));
if (!isa<PointerType>(LI.getType())) return; // only loads OF pointers if (isPointerType(LI.getType()))
getValueNode(LI)->addEdgeTo(getLink(Ptr, 0)); getValueNode(LI).addEdgeTo(getLink(Ptr, 0, LI.getType()));
} }
void GraphBuilder::visitStoreInst(StoreInst &SI) { void GraphBuilder::visitStoreInst(StoreInst &SI) {
DSNode *DestPtr = getValueNode(*SI.getOperand(1)); DSNodeHandle &Dest = getValueDest(*SI.getOperand(1));
if (!isa<PointerType>(SI.getOperand(0)->getType())) return;
DSNode *Value = getValueNode(*SI.getOperand(0)); // Avoid adding edges from null, or processing non-"pointer" stores
DestPtr->addEdgeTo(getLink(Value, 0)); if (isPointerType(SI.getOperand(0)->getType()) &&
!isa<ConstantPointerNull>(SI.getOperand(0))) {
Dest.addEdgeTo(getValueDest(*SI.getOperand(0)));
}
} }
void GraphBuilder::visitReturnInst(ReturnInst &RI) { void GraphBuilder::visitReturnInst(ReturnInst &RI) {
if (RI.getNumOperands() && isa<PointerType>(RI.getOperand(0)->getType())) { if (RI.getNumOperands() && isPointerType(RI.getOperand(0)->getType()) &&
DSNode *Value = getLink(getValueNode(*RI.getOperand(0)), 0); !isa<ConstantPointerNull>(RI.getOperand(0))) {
Value->mergeWith(RetNode); DSNodeHandle &Value = getValueDest(*RI.getOperand(0));
Value.mergeWith(RetNode);
RetNode = Value; RetNode = Value;
} }
} }
@@ -288,13 +332,13 @@ void GraphBuilder::visitCallInst(CallInst &CI) {
vector<DSNodeHandle> &Args = FunctionCalls.back(); vector<DSNodeHandle> &Args = FunctionCalls.back();
// Set up the return value... // Set up the return value...
if (isa<PointerType>(CI.getType())) if (isPointerType(CI.getType()))
Args.push_back(getLink(getValueNode(CI), 0)); Args.push_back(getLink(getValueNode(CI), 0, CI.getType()));
else else
Args.push_back(0); Args.push_back(DSNodeHandle());
unsigned Start = 0; unsigned Start = 0;
// Special case for direct call, avoid creating spurious scalar node... // Special case for a direct call, avoid creating spurious scalar node...
if (GlobalValue *GV = dyn_cast<GlobalValue>(CI.getOperand(0))) { if (GlobalValue *GV = dyn_cast<GlobalValue>(CI.getOperand(0))) {
Args.push_back(getGlobalNode(*GV)); Args.push_back(getGlobalNode(*GV));
Start = 1; Start = 1;
@@ -302,21 +346,43 @@ void GraphBuilder::visitCallInst(CallInst &CI) {
// Pass the arguments in... // Pass the arguments in...
for (unsigned i = Start, e = CI.getNumOperands(); i != e; ++i) for (unsigned i = Start, e = CI.getNumOperands(); i != e; ++i)
if (isa<PointerType>(CI.getOperand(i)->getType())) if (isPointerType(CI.getOperand(i)->getType()))
Args.push_back(getLink(getValueNode(*CI.getOperand(i)), 0)); Args.push_back(getLink(getValueNode(*CI.getOperand(i)), 0,
CI.getOperand(i)->getType()));
} }
// visitInstruction - All safe instructions have been processed above, this case /// Handle casts...
// is where unsafe ptr instructions land. void GraphBuilder::visitCastInst(CastInst &CI) {
if (isPointerType(CI.getType()) && isPointerType(CI.getOperand(0)->getType()))
getValueNode(CI).addEdgeTo(getLink(getValueNode(*CI.getOperand(0)), 0,
CI.getOperand(0)->getType()));
}
//===----------------------------------------------------------------------===//
// LocalDataStructures Implementation
//===----------------------------------------------------------------------===//
// releaseMemory - If the pass pipeline is done with this pass, we can release
// our memory... here...
// //
void GraphBuilder::visitInstruction(Instruction &I) { void LocalDataStructures::releaseMemory() {
// If the return type is a pointer, mark the pointed node as being a cast node for (std::map<const Function*, DSGraph*>::iterator I = DSInfo.begin(),
if (isa<PointerType>(I.getType())) E = DSInfo.end(); I != E; ++I)
getLink(getValueNode(I), 0)->NodeType |= DSNode::CastNode; delete I->second;
// If any operands are pointers, mark the pointed nodes as being a cast node // Empty map so next time memory is released, data structures are not
for (Instruction::op_iterator i = I.op_begin(), E = I.op_end(); i!=E; ++i) // re-deleted.
if (isa<PointerType>(i->get()->getType())) DSInfo.clear();
getLink(getValueNode(*i->get()), 0)->NodeType |= DSNode::CastNode; }
bool LocalDataStructures::run(Module &M) {
// Calculate all of the graphs...
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isExternal())
DSInfo.insert(std::make_pair(I, new DSGraph(*I)));
return false;
} }

View File

@@ -14,35 +14,37 @@ using std::string;
void DSNode::dump() const { print(std::cerr, 0); } void DSNode::dump() const { print(std::cerr, 0); }
string DSNode::getCaption(const DSGraph *G) const { static string getCaption(const DSNode *N, const DSGraph *G) {
std::stringstream OS; std::stringstream OS;
Module *M = G && &G->getFunction()? G->getFunction().getParent() : 0; Module *M = G && &G->getFunction() ? G->getFunction().getParent() : 0;
WriteTypeSymbolic(OS, getType(), M);
OS << " "; for (unsigned i = 0, e = N->getTypeEntries().size(); i != e; ++i) {
if (NodeType & ScalarNode) OS << "S"; WriteTypeSymbolic(OS, N->getTypeEntries()[i].first, M);
if (NodeType & AllocaNode) OS << "A"; if (N->getTypeEntries()[i].second)
if (NodeType & NewNode ) OS << "N"; OS << "@" << N->getTypeEntries()[i].second;
if (NodeType & GlobalNode) OS << "G";
if (NodeType & SubElement) OS << "E";
if (NodeType & CastNode ) OS << "C";
if (NodeType & Incomplete) OS << "I";
for (unsigned i = 0, e = Globals.size(); i != e; ++i) {
OS << "\n"; OS << "\n";
WriteAsOperand(OS, Globals[i], false, true, M);
} }
if ((NodeType & ScalarNode) && G) { if (N->NodeType & DSNode::ScalarNode) OS << "S";
if (N->NodeType & DSNode::AllocaNode) OS << "A";
if (N->NodeType & DSNode::NewNode ) OS << "N";
if (N->NodeType & DSNode::GlobalNode) OS << "G";
if (N->NodeType & DSNode::Incomplete) OS << "I";
for (unsigned i = 0, e = N->getGlobals().size(); i != e; ++i) {
WriteAsOperand(OS, N->getGlobals()[i], false, true, M);
OS << "\n";
}
if ((N->NodeType & DSNode::ScalarNode) && G) {
const std::map<Value*, DSNodeHandle> &VM = G->getValueMap(); const std::map<Value*, DSNodeHandle> &VM = G->getValueMap();
for (std::map<Value*, DSNodeHandle>::const_iterator I = VM.begin(), for (std::map<Value*, DSNodeHandle>::const_iterator I = VM.begin(),
E = VM.end(); I != E; ++I) E = VM.end(); I != E; ++I)
if (I->second == this) { if (I->second.getNode() == N) {
OS << "\n";
WriteAsOperand(OS, I->first, false, true, M); WriteAsOperand(OS, I->first, false, true, M);
OS << "\n";
} }
} }
return OS.str(); return OS.str();
} }
@@ -77,10 +79,12 @@ static std::string escapeLabel(const std::string &In) {
static void writeEdge(std::ostream &O, const void *SrcNode, static void writeEdge(std::ostream &O, const void *SrcNode,
const char *SrcNodePortName, int SrcNodeIdx, const char *SrcNodePortName, int SrcNodeIdx,
const DSNode *VS, const std::string &EdgeAttr = "") { const DSNodeHandle &VS,
const std::string &EdgeAttr = "") {
O << "\tNode" << SrcNode << SrcNodePortName; O << "\tNode" << SrcNode << SrcNodePortName;
if (SrcNodeIdx != -1) O << SrcNodeIdx; if (SrcNodeIdx != -1) O << SrcNodeIdx;
O << " -> Node" << (void*)VS; O << " -> Node" << (void*)VS.getNode();
if (VS.getOffset()) O << ":g" << VS.getOffset();
if (!EdgeAttr.empty()) if (!EdgeAttr.empty())
O << "[" << EdgeAttr << "]"; O << "[" << EdgeAttr << "]";
@@ -88,13 +92,13 @@ static void writeEdge(std::ostream &O, const void *SrcNode,
} }
void DSNode::print(std::ostream &O, const DSGraph *G) const { void DSNode::print(std::ostream &O, const DSGraph *G) const {
std::string Caption = escapeLabel(getCaption(G)); std::string Caption = escapeLabel(getCaption(this, G));
O << "\tNode" << (void*)this << " [ label =\"{" << Caption; O << "\tNode" << (void*)this << " [ label =\"{" << Caption;
if (!Links.empty()) { if (getSize() != 0) {
O << "|{"; O << "|{";
for (unsigned i = 0; i < Links.size(); ++i) { for (unsigned i = 0; i < getSize(); ++i) {
if (i) O << "|"; if (i) O << "|";
O << "<g" << i << ">"; O << "<g" << i << ">";
} }
@@ -102,9 +106,9 @@ void DSNode::print(std::ostream &O, const DSGraph *G) const {
} }
O << "}\"];\n"; O << "}\"];\n";
for (unsigned i = 0; i < Links.size(); ++i) for (unsigned i = 0; i != getSize(); ++i)
if (Links[i]) if (const DSNodeHandle *DSN = getLink(i))
writeEdge(O, this, ":g", i, Links[i]); writeEdge(O, this, ":g", i, *DSN);
} }
void DSGraph::print(std::ostream &O) const { void DSGraph::print(std::ostream &O) const {
@@ -114,10 +118,8 @@ void DSGraph::print(std::ostream &O) const {
<< "\tsize=\"10,7.5\";\n" << "\tsize=\"10,7.5\";\n"
<< "\trotate=\"90\";\n"; << "\trotate=\"90\";\n";
if (&Func != 0) if (Func != 0)
O << "\tlabel=\"Function\\ " << Func.getName() << "\";\n\n"; O << "\tlabel=\"Function\\ " << Func->getName() << "\";\n\n";
else
O << "\tlabel=\"Global Graph\";\n\n";
// Output all of the nodes... // Output all of the nodes...
for (unsigned i = 0, e = Nodes.size(); i != e; ++i) for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
@@ -143,7 +145,7 @@ void DSGraph::print(std::ostream &O) const {
O << "}}\"];\n"; O << "}}\"];\n";
for (unsigned j = 0, e = Call.size(); j != e; ++j) for (unsigned j = 0, e = Call.size(); j != e; ++j)
if (Call[j]) if (Call[j].getNode())
writeEdge(O, &Call, ":g", j, Call[j], "color=gray63"); writeEdge(O, &Call, ":g", j, Call[j], "color=gray63");
} }
@@ -152,16 +154,14 @@ void DSGraph::print(std::ostream &O) const {
} }
static void printGraph(const DSGraph &Graph, std::ostream &O, void DSGraph::writeGraphToFile(std::ostream &O, const string &GraphName) {
const string &GraphName, const string &Prefix) { string Filename = GraphName + ".dot";
string Filename = Prefix + "." + GraphName + ".dot";
O << "Writing '" << Filename << "'..."; O << "Writing '" << Filename << "'...";
std::ofstream F(Filename.c_str()); std::ofstream F(Filename.c_str());
if (F.good()) { if (F.good()) {
Graph.print(F); print(F);
O << " [" << Graph.getGraphSize() << "+" O << " [" << getGraphSize() << "+" << getFunctionCalls().size() << "]\n";
<< Graph.getFunctionCalls().size() << "]\n";
} else { } else {
O << " error opening file for writing!\n"; O << " error opening file for writing!\n";
} }
@@ -179,31 +179,33 @@ static void printCollection(const Collection &C, std::ostream &O,
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
if (!I->isExternal() && (I->getName() == "main" || !OnlyPrintMain)) if (!I->isExternal() && (I->getName() == "main" || !OnlyPrintMain))
printGraph(C.getDSGraph((Function&)*I), O, I->getName(), Prefix); C.getDSGraph((Function&)*I).writeGraphToFile(O, Prefix+I->getName());
} }
// print - Print out the analysis results... // print - Print out the analysis results...
void LocalDataStructures::print(std::ostream &O, const Module *M) const { void LocalDataStructures::print(std::ostream &O, const Module *M) const {
printCollection(*this, O, M, "ds"); printCollection(*this, O, M, "ds.");
} }
#if 0
void BUDataStructures::print(std::ostream &O, const Module *M) const { void BUDataStructures::print(std::ostream &O, const Module *M) const {
printCollection(*this, O, M, "bu"); printCollection(*this, O, M, "bu.");
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
if (!I->isExternal()) { if (!I->isExternal()) {
printGraph(*getDSGraph(*I).GlobalsGraph, O, "program", "gg"); (*getDSGraph(*I).GlobalsGraph)->writeGraphToFile(O, "gg.program");
break; break;
} }
} }
void TDDataStructures::print(std::ostream &O, const Module *M) const { void TDDataStructures::print(std::ostream &O, const Module *M) const {
printCollection(*this, O, M, "td"); printCollection(*this, O, M, "td.");
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
if (!I->isExternal()) { if (!I->isExternal()) {
printGraph(*getDSGraph(*I).GlobalsGraph, O, "program", "gg"); (*getDSGraph(*I).GlobalsGraph)->writeGraphToFile(O, "gg.program");
break; break;
} }
} }
#endif

View File

@@ -10,9 +10,10 @@
#include "llvm/Analysis/DataStructure.h" #include "llvm/Analysis/DataStructure.h"
#include "llvm/Module.h" #include "llvm/Module.h"
#include "llvm/DerivedTypes.h" #include "llvm/DerivedTypes.h"
#include "Support/StatisticReporter.h" #include "Support/Statistic.h"
using std::map; using std::map;
#if 0
static RegisterAnalysis<TDDataStructures> static RegisterAnalysis<TDDataStructures>
Y("tddatastructure", "Top-down Data Structure Analysis Closure"); Y("tddatastructure", "Top-down Data Structure Analysis Closure");
@@ -223,3 +224,4 @@ DSGraph &TDDataStructures::calculateGraph(Function &F) {
return *Graph; return *Graph;
} }
#endif