mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-02-01 02:33:44 +00:00
Remove unused file
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@14460 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
c347dfb767
commit
fdd9f1facc
@ -1,495 +0,0 @@
|
||||
//===- MutateStructTypes.cpp - Change struct defns ------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This pass is used to change structure accesses and type definitions in some
|
||||
// way. It can be used to arbitrarily permute structure fields, safely, without
|
||||
// breaking code. A transformation may only be done on a type if that type has
|
||||
// been found to be "safe" by the 'FindUnsafePointerTypes' pass. This pass will
|
||||
// assert and die if you try to do an illegal transformation.
|
||||
//
|
||||
// This is an interprocedural pass that requires the entire program to do a
|
||||
// transformation.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Transforms/MutateStructTypes.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/SymbolTable.h"
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/Constants.h"
|
||||
#include "Support/STLExtras.h"
|
||||
#include "Support/Debug.h"
|
||||
#include <algorithm>
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
// ValuePlaceHolder - A stupid little marker value. It appears as an
|
||||
// instruction of type Instruction::UserOp1.
|
||||
//
|
||||
struct ValuePlaceHolder : public Instruction {
|
||||
ValuePlaceHolder(const Type *Ty) : Instruction(Ty, UserOp1, "") {}
|
||||
|
||||
virtual Instruction *clone() const { abort(); return 0; }
|
||||
virtual const char *getOpcodeName() const { return "placeholder"; }
|
||||
};
|
||||
|
||||
|
||||
// ConvertType - Convert from the old type system to the new one...
|
||||
const Type *MutateStructTypes::ConvertType(const Type *Ty) {
|
||||
if (Ty->isPrimitiveType() ||
|
||||
isa<OpaqueType>(Ty)) return Ty; // Don't convert primitives
|
||||
|
||||
std::map<const Type *, PATypeHolder>::iterator I = TypeMap.find(Ty);
|
||||
if (I != TypeMap.end()) return I->second;
|
||||
|
||||
const Type *DestTy = 0;
|
||||
|
||||
PATypeHolder PlaceHolder = OpaqueType::get();
|
||||
TypeMap.insert(std::make_pair(Ty, PlaceHolder.get()));
|
||||
|
||||
switch (Ty->getTypeID()) {
|
||||
case Type::FunctionTyID: {
|
||||
const FunctionType *FT = cast<FunctionType>(Ty);
|
||||
const Type *RetTy = ConvertType(FT->getReturnType());
|
||||
std::vector<const Type*> ArgTypes;
|
||||
|
||||
for (FunctionType::param_iterator I = FT->param_begin(),
|
||||
E = FT->param_end(); I != E; ++I)
|
||||
ArgTypes.push_back(ConvertType(*I));
|
||||
|
||||
DestTy = FunctionType::get(RetTy, ArgTypes, FT->isVarArg());
|
||||
break;
|
||||
}
|
||||
case Type::StructTyID: {
|
||||
const StructType *ST = cast<StructType>(Ty);
|
||||
std::vector<const Type *> Types;
|
||||
|
||||
for (StructType::element_iterator I = ST->element_begin(),
|
||||
E = ST->element_end(); I != E; ++I)
|
||||
Types.push_back(ConvertType(*I));
|
||||
DestTy = StructType::get(Types);
|
||||
break;
|
||||
}
|
||||
case Type::ArrayTyID:
|
||||
DestTy = ArrayType::get(ConvertType(cast<ArrayType>(Ty)->getElementType()),
|
||||
cast<ArrayType>(Ty)->getNumElements());
|
||||
break;
|
||||
|
||||
case Type::PointerTyID:
|
||||
DestTy = PointerType::get(
|
||||
ConvertType(cast<PointerType>(Ty)->getElementType()));
|
||||
break;
|
||||
default:
|
||||
assert(0 && "Unknown type!");
|
||||
return 0;
|
||||
}
|
||||
|
||||
assert(DestTy && "Type didn't get created!?!?");
|
||||
|
||||
// Refine our little placeholder value into a real type...
|
||||
((DerivedType*)PlaceHolder.get())->refineAbstractTypeTo(DestTy);
|
||||
TypeMap.insert(std::make_pair(Ty, PlaceHolder.get()));
|
||||
|
||||
return PlaceHolder.get();
|
||||
}
|
||||
|
||||
|
||||
// AdjustIndices - Convert the indices specified by Idx to the new changed form
|
||||
// using the specified OldTy as the base type being indexed into.
|
||||
//
|
||||
void MutateStructTypes::AdjustIndices(const CompositeType *OldTy,
|
||||
std::vector<Value*> &Idx,
|
||||
unsigned i) {
|
||||
assert(i < Idx.size() && "i out of range!");
|
||||
const CompositeType *NewCT = cast<CompositeType>(ConvertType(OldTy));
|
||||
if (NewCT == OldTy) return; // No adjustment unless type changes
|
||||
|
||||
if (const StructType *OldST = dyn_cast<StructType>(OldTy)) {
|
||||
// Figure out what the current index is...
|
||||
unsigned ElNum = cast<ConstantUInt>(Idx[i])->getValue();
|
||||
assert(ElNum < OldST->getNumElements());
|
||||
|
||||
std::map<const StructType*, TransformType>::iterator
|
||||
I = Transforms.find(OldST);
|
||||
if (I != Transforms.end()) {
|
||||
assert(ElNum < I->second.second.size());
|
||||
// Apply the XForm specified by Transforms map...
|
||||
unsigned NewElNum = I->second.second[ElNum];
|
||||
Idx[i] = ConstantUInt::get(Idx[i]->getType(), NewElNum);
|
||||
}
|
||||
}
|
||||
|
||||
// Recursively process subtypes...
|
||||
if (i+1 < Idx.size())
|
||||
AdjustIndices(cast<CompositeType>(OldTy->getTypeAtIndex(Idx[i])), Idx, i+1);
|
||||
}
|
||||
|
||||
|
||||
// ConvertValue - Convert from the old value in the old type system to the new
|
||||
// type system.
|
||||
//
|
||||
Value *MutateStructTypes::ConvertValue(const Value *V) {
|
||||
// Ignore null values and simple constants..
|
||||
if (V == 0) return 0;
|
||||
|
||||
if (const Constant *CPV = dyn_cast<Constant>(V)) {
|
||||
if (V->getType()->isPrimitiveType())
|
||||
return (Value*)CPV;
|
||||
|
||||
if (isa<ConstantPointerNull>(CPV))
|
||||
return ConstantPointerNull::get(
|
||||
cast<PointerType>(ConvertType(V->getType())));
|
||||
assert(0 && "Unable to convert constpool val of this type!");
|
||||
}
|
||||
|
||||
// Check to see if this is an out of function reference first...
|
||||
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
|
||||
// Check to see if the value is in the map...
|
||||
std::map<const GlobalValue*, GlobalValue*>::iterator I = GlobalMap.find(GV);
|
||||
if (I == GlobalMap.end())
|
||||
return (Value*)GV; // Not mapped, just return value itself
|
||||
return I->second;
|
||||
}
|
||||
|
||||
std::map<const Value*, Value*>::iterator I = LocalValueMap.find(V);
|
||||
if (I != LocalValueMap.end()) return I->second;
|
||||
|
||||
if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
|
||||
// Create placeholder block to represent the basic block we haven't seen yet
|
||||
// This will be used when the block gets created.
|
||||
//
|
||||
return LocalValueMap[V] = new BasicBlock(BB->getName());
|
||||
}
|
||||
|
||||
DEBUG(std::cerr << "NPH: " << V << "\n");
|
||||
|
||||
// Otherwise make a constant to represent it
|
||||
return LocalValueMap[V] = new ValuePlaceHolder(ConvertType(V->getType()));
|
||||
}
|
||||
|
||||
|
||||
// setTransforms - Take a map that specifies what transformation to do for each
|
||||
// field of the specified structure types. There is one element of the vector
|
||||
// for each field of the structure. The value specified indicates which slot of
|
||||
// the destination structure the field should end up in. A negative value
|
||||
// indicates that the field should be deleted entirely.
|
||||
//
|
||||
void MutateStructTypes::setTransforms(const TransformsType &XForm) {
|
||||
|
||||
// Loop over the types and insert dummy entries into the type map so that
|
||||
// recursive types are resolved properly...
|
||||
for (std::map<const StructType*, std::vector<int> >::const_iterator
|
||||
I = XForm.begin(), E = XForm.end(); I != E; ++I) {
|
||||
const StructType *OldTy = I->first;
|
||||
TypeMap.insert(std::make_pair(OldTy, OpaqueType::get()));
|
||||
}
|
||||
|
||||
// Loop over the type specified and figure out what types they should become
|
||||
for (std::map<const StructType*, std::vector<int> >::const_iterator
|
||||
I = XForm.begin(), E = XForm.end(); I != E; ++I) {
|
||||
const StructType *OldTy = I->first;
|
||||
const std::vector<int> &InVec = I->second;
|
||||
|
||||
assert(OldTy->getNumElements() == InVec.size() &&
|
||||
"Action not specified for every element of structure type!");
|
||||
|
||||
std::vector<const Type *> NewType;
|
||||
|
||||
// Convert the elements of the type over, including the new position mapping
|
||||
int Idx = 0;
|
||||
std::vector<int>::const_iterator TI = find(InVec.begin(), InVec.end(), Idx);
|
||||
while (TI != InVec.end()) {
|
||||
unsigned Offset = TI-InVec.begin();
|
||||
const Type *NewEl = ConvertType(OldTy->getContainedType(Offset));
|
||||
assert(NewEl && "Element not found!");
|
||||
NewType.push_back(NewEl);
|
||||
|
||||
TI = find(InVec.begin(), InVec.end(), ++Idx);
|
||||
}
|
||||
|
||||
// Create a new type that corresponds to the destination type
|
||||
PATypeHolder NSTy = StructType::get(NewType);
|
||||
|
||||
// Refine the old opaque type to the new type to properly handle recursive
|
||||
// types...
|
||||
//
|
||||
const Type *OldTypeStub = TypeMap.find(OldTy)->second.get();
|
||||
((DerivedType*)OldTypeStub)->refineAbstractTypeTo(NSTy);
|
||||
|
||||
// Add the transformation to the Transforms map.
|
||||
Transforms.insert(std::make_pair(OldTy,
|
||||
std::make_pair(cast<StructType>(NSTy.get()), InVec)));
|
||||
|
||||
DEBUG(std::cerr << "Mutate " << OldTy << "\nTo " << NSTy << "\n");
|
||||
}
|
||||
}
|
||||
|
||||
void MutateStructTypes::clearTransforms() {
|
||||
Transforms.clear();
|
||||
TypeMap.clear();
|
||||
GlobalMap.clear();
|
||||
assert(LocalValueMap.empty() &&
|
||||
"Local Value Map should always be empty between transformations!");
|
||||
}
|
||||
|
||||
// processGlobals - This loops over global constants defined in the
|
||||
// module, converting them to their new type.
|
||||
//
|
||||
void MutateStructTypes::processGlobals(Module &M) {
|
||||
// Loop through the functions in the module and create a new version of the
|
||||
// function to contained the transformed code. Also, be careful to not
|
||||
// process the values that we add.
|
||||
//
|
||||
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
|
||||
if (!I->isExternal()) {
|
||||
const FunctionType *NewMTy =
|
||||
cast<FunctionType>(ConvertType(I->getFunctionType()));
|
||||
|
||||
// Create a new function to put stuff into...
|
||||
Function *NewMeth = new Function(NewMTy, I->getLinkage(), I->getName());
|
||||
if (I->hasName())
|
||||
I->setName("OLD."+I->getName());
|
||||
|
||||
// Insert the new function into the function list... to be filled in later
|
||||
M.getFunctionList().push_back(NewMeth);
|
||||
|
||||
// Keep track of the association...
|
||||
GlobalMap[I] = NewMeth;
|
||||
}
|
||||
|
||||
// TODO: HANDLE GLOBAL VARIABLES
|
||||
|
||||
// Remap the symbol table to refer to the types in a nice way
|
||||
//
|
||||
SymbolTable &ST = M.getSymbolTable();
|
||||
SymbolTable::type_iterator TI = ST.type_begin();
|
||||
SymbolTable::type_iterator TE = ST.type_end();
|
||||
for ( ; TI != TE; ++TI ) {
|
||||
// FIXME: This is gross, I'm reaching right into a symbol table and
|
||||
// mucking around with it's internals... but oh well.
|
||||
//
|
||||
TI->second = const_cast<Type*>(ConvertType(TI->second));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// removeDeadGlobals - For this pass, all this does is remove the old versions
|
||||
// of the functions and global variables that we no longer need.
|
||||
void MutateStructTypes::removeDeadGlobals(Module &M) {
|
||||
// Prepare for deletion of globals by dropping their interdependencies...
|
||||
for(Module::iterator I = M.begin(); I != M.end(); ++I) {
|
||||
if (GlobalMap.find(I) != GlobalMap.end())
|
||||
I->dropAllReferences();
|
||||
}
|
||||
|
||||
// Run through and delete the functions and global variables...
|
||||
#if 0 // TODO: HANDLE GLOBAL VARIABLES
|
||||
M->getGlobalList().delete_span(M.gbegin(), M.gbegin()+NumGVars/2);
|
||||
#endif
|
||||
for(Module::iterator I = M.begin(); I != M.end();) {
|
||||
if (GlobalMap.find(I) != GlobalMap.end())
|
||||
I = M.getFunctionList().erase(I);
|
||||
else
|
||||
++I;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
// transformFunction - This transforms the instructions of the function to use
|
||||
// the new types.
|
||||
//
|
||||
void MutateStructTypes::transformFunction(Function *m) {
|
||||
const Function *M = m;
|
||||
std::map<const GlobalValue*, GlobalValue*>::iterator GMI = GlobalMap.find(M);
|
||||
if (GMI == GlobalMap.end())
|
||||
return; // Do not affect one of our new functions that we are creating
|
||||
|
||||
Function *NewMeth = cast<Function>(GMI->second);
|
||||
|
||||
// Okay, first order of business, create the arguments...
|
||||
for (Function::aiterator I = m->abegin(), E = m->aend(),
|
||||
DI = NewMeth->abegin(); I != E; ++I, ++DI) {
|
||||
DI->setName(I->getName());
|
||||
LocalValueMap[I] = DI; // Keep track of value mapping
|
||||
}
|
||||
|
||||
|
||||
// Loop over all of the basic blocks copying instructions over...
|
||||
for (Function::const_iterator BB = M->begin(), BBE = M->end(); BB != BBE;
|
||||
++BB) {
|
||||
// Create a new basic block and establish a mapping between the old and new
|
||||
BasicBlock *NewBB = cast<BasicBlock>(ConvertValue(BB));
|
||||
NewMeth->getBasicBlockList().push_back(NewBB); // Add block to function
|
||||
|
||||
// Copy over all of the instructions in the basic block...
|
||||
for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
|
||||
II != IE; ++II) {
|
||||
|
||||
const Instruction &I = *II; // Get the current instruction...
|
||||
Instruction *NewI = 0;
|
||||
|
||||
switch (I.getOpcode()) {
|
||||
// Terminator Instructions
|
||||
case Instruction::Ret:
|
||||
NewI = new ReturnInst(
|
||||
ConvertValue(cast<ReturnInst>(I).getReturnValue()));
|
||||
break;
|
||||
case Instruction::Br: {
|
||||
const BranchInst &BI = cast<BranchInst>(I);
|
||||
if (BI.isConditional()) {
|
||||
NewI =
|
||||
new BranchInst(cast<BasicBlock>(ConvertValue(BI.getSuccessor(0))),
|
||||
cast<BasicBlock>(ConvertValue(BI.getSuccessor(1))),
|
||||
ConvertValue(BI.getCondition()));
|
||||
} else {
|
||||
NewI =
|
||||
new BranchInst(cast<BasicBlock>(ConvertValue(BI.getSuccessor(0))));
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Instruction::Switch:
|
||||
case Instruction::Invoke:
|
||||
case Instruction::Unwind:
|
||||
assert(0 && "Insn not implemented!");
|
||||
|
||||
// Binary Instructions
|
||||
case Instruction::Add:
|
||||
case Instruction::Sub:
|
||||
case Instruction::Mul:
|
||||
case Instruction::Div:
|
||||
case Instruction::Rem:
|
||||
// Logical Operations
|
||||
case Instruction::And:
|
||||
case Instruction::Or:
|
||||
case Instruction::Xor:
|
||||
|
||||
// Binary Comparison Instructions
|
||||
case Instruction::SetEQ:
|
||||
case Instruction::SetNE:
|
||||
case Instruction::SetLE:
|
||||
case Instruction::SetGE:
|
||||
case Instruction::SetLT:
|
||||
case Instruction::SetGT:
|
||||
NewI = BinaryOperator::create((Instruction::BinaryOps)I.getOpcode(),
|
||||
ConvertValue(I.getOperand(0)),
|
||||
ConvertValue(I.getOperand(1)));
|
||||
break;
|
||||
|
||||
case Instruction::Shr:
|
||||
case Instruction::Shl:
|
||||
NewI = new ShiftInst(cast<ShiftInst>(I).getOpcode(),
|
||||
ConvertValue(I.getOperand(0)),
|
||||
ConvertValue(I.getOperand(1)));
|
||||
break;
|
||||
|
||||
|
||||
// Memory Instructions
|
||||
case Instruction::Alloca:
|
||||
NewI =
|
||||
new MallocInst(
|
||||
ConvertType(cast<PointerType>(I.getType())->getElementType()),
|
||||
I.getNumOperands() ? ConvertValue(I.getOperand(0)) :0);
|
||||
break;
|
||||
case Instruction::Malloc:
|
||||
NewI =
|
||||
new MallocInst(
|
||||
ConvertType(cast<PointerType>(I.getType())->getElementType()),
|
||||
I.getNumOperands() ? ConvertValue(I.getOperand(0)) :0);
|
||||
break;
|
||||
|
||||
case Instruction::Free:
|
||||
NewI = new FreeInst(ConvertValue(I.getOperand(0)));
|
||||
break;
|
||||
|
||||
case Instruction::Load:
|
||||
NewI = new LoadInst(ConvertValue(I.getOperand(0)));
|
||||
break;
|
||||
case Instruction::Store:
|
||||
NewI = new StoreInst(ConvertValue(I.getOperand(0)),
|
||||
ConvertValue(I.getOperand(1)));
|
||||
break;
|
||||
case Instruction::GetElementPtr: {
|
||||
const GetElementPtrInst &GEP = cast<GetElementPtrInst>(I);
|
||||
std::vector<Value*> Indices(GEP.idx_begin(), GEP.idx_end());
|
||||
if (!Indices.empty()) {
|
||||
const Type *PTy =
|
||||
cast<PointerType>(GEP.getOperand(0)->getType())->getElementType();
|
||||
AdjustIndices(cast<CompositeType>(PTy), Indices);
|
||||
}
|
||||
|
||||
NewI = new GetElementPtrInst(ConvertValue(GEP.getOperand(0)), Indices);
|
||||
break;
|
||||
}
|
||||
|
||||
// Miscellaneous Instructions
|
||||
case Instruction::PHI: {
|
||||
const PHINode &OldPN = cast<PHINode>(I);
|
||||
PHINode *PN = new PHINode(ConvertType(OldPN.getType()));
|
||||
for (unsigned i = 0; i < OldPN.getNumIncomingValues(); ++i)
|
||||
PN->addIncoming(ConvertValue(OldPN.getIncomingValue(i)),
|
||||
cast<BasicBlock>(ConvertValue(OldPN.getIncomingBlock(i))));
|
||||
NewI = PN;
|
||||
break;
|
||||
}
|
||||
case Instruction::Cast:
|
||||
NewI = new CastInst(ConvertValue(I.getOperand(0)),
|
||||
ConvertType(I.getType()));
|
||||
break;
|
||||
case Instruction::Call: {
|
||||
Value *Meth = ConvertValue(I.getOperand(0));
|
||||
std::vector<Value*> Operands;
|
||||
for (unsigned i = 1; i < I.getNumOperands(); ++i)
|
||||
Operands.push_back(ConvertValue(I.getOperand(i)));
|
||||
NewI = new CallInst(Meth, Operands);
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
assert(0 && "UNKNOWN INSTRUCTION ENCOUNTERED!\n");
|
||||
break;
|
||||
}
|
||||
|
||||
NewI->setName(I.getName());
|
||||
NewBB->getInstList().push_back(NewI);
|
||||
|
||||
// Check to see if we had to make a placeholder for this value...
|
||||
std::map<const Value*,Value*>::iterator LVMI = LocalValueMap.find(&I);
|
||||
if (LVMI != LocalValueMap.end()) {
|
||||
// Yup, make sure it's a placeholder...
|
||||
Instruction *I = cast<Instruction>(LVMI->second);
|
||||
assert(I->getOpcode() == Instruction::UserOp1 && "Not a placeholder!");
|
||||
|
||||
// Replace all uses of the place holder with the real deal...
|
||||
I->replaceAllUsesWith(NewI);
|
||||
delete I; // And free the placeholder memory
|
||||
}
|
||||
|
||||
// Keep track of the fact the the local implementation of this instruction
|
||||
// is NewI.
|
||||
LocalValueMap[&I] = NewI;
|
||||
}
|
||||
}
|
||||
|
||||
LocalValueMap.clear();
|
||||
}
|
||||
|
||||
|
||||
bool MutateStructTypes::run(Module &M) {
|
||||
processGlobals(M);
|
||||
|
||||
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
|
||||
transformFunction(I);
|
||||
|
||||
removeDeadGlobals(M);
|
||||
return true;
|
||||
}
|
||||
|
||||
// vim: sw=2
|
Loading…
x
Reference in New Issue
Block a user