Fix the autoconf build

lib/ExecutionEngine/Targets has no Makefile, causing the autoconf build
to fail.  Solve this by bringing the COFF implementation of RuntimeDyld
in line like the Mach-O and ELF implementations.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231579 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
David Majnemer 2015-03-07 21:47:46 +00:00
parent fab98a4843
commit fe1ef279f3
3 changed files with 160 additions and 195 deletions

View File

@ -5,5 +5,4 @@ add_llvm_library(LLVMRuntimeDyld
RuntimeDyldCOFF.cpp
RuntimeDyldELF.cpp
RuntimeDyldMachO.cpp
Targets/RuntimeDyldCOFFX86_64.cpp
)

View File

@ -1,188 +0,0 @@
//===-- RuntimeDyldCOFFX86_64.cpp - COFF/X86_64 specific code ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// COFF x86_x64 support for MC-JIT runtime dynamic linker.
//
//===----------------------------------------------------------------------===//
#include "RuntimeDyldCOFFX86_64.h"
#define DEBUG_TYPE "dyld"
namespace llvm {
void RuntimeDyldCOFFX86_64::registerEHFrames() {
if (!MemMgr)
return;
for (auto const &EHFrameSID : UnregisteredEHFrameSections) {
uint8_t *EHFrameAddr = Sections[EHFrameSID].Address;
uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress;
size_t EHFrameSize = Sections[EHFrameSID].Size;
MemMgr->registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
RegisteredEHFrameSections.push_back(EHFrameSID);
}
UnregisteredEHFrameSections.clear();
}
void RuntimeDyldCOFFX86_64::deregisterEHFrames() {
// Stub
}
// The target location for the relocation is described by RE.SectionID and
// RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
// SectionEntry has three members describing its location.
// SectionEntry::Address is the address at which the section has been loaded
// into memory in the current (host) process. SectionEntry::LoadAddress is the
// address that the section will have in the target process.
// SectionEntry::ObjAddress is the address of the bits for this section in the
// original emitted object image (also in the current address space).
//
// Relocations will be applied as if the section were loaded at
// SectionEntry::LoadAddress, but they will be applied at an address based
// on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
// Target memory contents if they are required for value calculations.
//
// The Value parameter here is the load address of the symbol for the
// relocation to be applied. For relocations which refer to symbols in the
// current object Value will be the LoadAddress of the section in which
// the symbol resides (RE.Addend provides additional information about the
// symbol location). For external symbols, Value will be the address of the
// symbol in the target address space.
void RuntimeDyldCOFFX86_64::resolveRelocation(const RelocationEntry &RE,
uint64_t Value) {
const SectionEntry &Section = Sections[RE.SectionID];
uint8_t *Target = Section.Address + RE.Offset;
switch (RE.RelType) {
case COFF::IMAGE_REL_AMD64_REL32:
case COFF::IMAGE_REL_AMD64_REL32_1:
case COFF::IMAGE_REL_AMD64_REL32_2:
case COFF::IMAGE_REL_AMD64_REL32_3:
case COFF::IMAGE_REL_AMD64_REL32_4:
case COFF::IMAGE_REL_AMD64_REL32_5: {
uint32_t *TargetAddress = (uint32_t *)Target;
uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
// Delta is the distance from the start of the reloc to the end of the
// instruction with the reloc.
uint64_t Delta = 4 + (RE.RelType - COFF::IMAGE_REL_AMD64_REL32);
Value -= FinalAddress + Delta;
uint64_t Result = Value + RE.Addend;
assert(((int64_t)Result <= INT32_MAX) && "Relocation overflow");
assert(((int64_t)Result >= INT32_MIN) && "Relocation underflow");
*TargetAddress = Result;
break;
}
case COFF::IMAGE_REL_AMD64_ADDR32NB: {
// Note ADDR32NB requires a well-established notion of
// image base. This address must be less than or equal
// to every section's load address, and all sections must be
// within a 32 bit offset from the base.
//
// For now we just set these to zero.
uint32_t *TargetAddress = (uint32_t *)Target;
*TargetAddress = 0;
break;
}
case COFF::IMAGE_REL_AMD64_ADDR64: {
uint64_t *TargetAddress = (uint64_t *)Target;
*TargetAddress = Value + RE.Addend;
break;
}
default:
llvm_unreachable("Relocation type not implemented yet!");
break;
}
}
relocation_iterator RuntimeDyldCOFFX86_64::processRelocationRef(
unsigned SectionID, relocation_iterator RelI, const ObjectFile &Obj,
ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
// Find the symbol referred to in the relocation, and
// get its section and offset.
//
// Insist for now that all symbols be resolvable within
// the scope of this object file.
symbol_iterator Symbol = RelI->getSymbol();
if (Symbol == Obj.symbol_end())
report_fatal_error("Unknown symbol in relocation");
unsigned TargetSectionID = 0;
uint64_t TargetOffset = UnknownAddressOrSize;
section_iterator SecI(Obj.section_end());
Symbol->getSection(SecI);
if (SecI == Obj.section_end())
report_fatal_error("Unknown section in relocation");
bool IsCode = SecI->isText();
TargetSectionID = findOrEmitSection(Obj, *SecI, IsCode, ObjSectionToID);
TargetOffset = getSymbolOffset(*Symbol);
// Determine the Addend used to adjust the relocation value.
uint64_t RelType;
Check(RelI->getType(RelType));
uint64_t Offset;
Check(RelI->getOffset(Offset));
uint64_t Addend = 0;
SectionEntry &Section = Sections[SectionID];
uintptr_t ObjTarget = Section.ObjAddress + Offset;
switch (RelType) {
case COFF::IMAGE_REL_AMD64_REL32:
case COFF::IMAGE_REL_AMD64_REL32_1:
case COFF::IMAGE_REL_AMD64_REL32_2:
case COFF::IMAGE_REL_AMD64_REL32_3:
case COFF::IMAGE_REL_AMD64_REL32_4:
case COFF::IMAGE_REL_AMD64_REL32_5:
case COFF::IMAGE_REL_AMD64_ADDR32NB: {
uint32_t *Displacement = (uint32_t *)ObjTarget;
Addend = *Displacement;
break;
}
case COFF::IMAGE_REL_AMD64_ADDR64: {
uint64_t *Displacement = (uint64_t *)ObjTarget;
Addend = *Displacement;
break;
}
default:
break;
}
StringRef TargetName;
Symbol->getName(TargetName);
DEBUG(dbgs() << "\t\tIn Section " << SectionID << " Offset " << Offset
<< " RelType: " << RelType << " TargetName: " << TargetName
<< " Addend " << Addend << "\n");
RelocationEntry RE(SectionID, Offset, RelType, TargetOffset + Addend);
addRelocationForSection(RE, TargetSectionID);
return ++RelI;
}
void RuntimeDyldCOFFX86_64::finalizeLoad(const ObjectFile &Obj,
ObjSectionToIDMap &SectionMap) {
// Look for and record the EH frame section IDs.
for (const auto &SectionPair : SectionMap) {
const SectionRef &Section = SectionPair.first;
StringRef Name;
Check(Section.getName(Name));
// Note unwind info is split across .pdata and .xdata, so this
// may not be sufficiently general for all users.
if (Name == ".xdata") {
UnregisteredEHFrameSections.push_back(SectionPair.second);
}
}
}
}

View File

@ -18,7 +18,7 @@
#include "llvm/Support/COFF.h"
#include "../RuntimeDyldCOFF.h"
using namespace llvm;
#define DEBUG_TYPE "dyld"
namespace llvm {
@ -38,19 +38,173 @@ public:
return 6; // 2-byte jmp instruction + 32-bit relative address
}
void resolveRelocation(const RelocationEntry &RE, uint64_t Value) override;
// The target location for the relocation is described by RE.SectionID and
// RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
// SectionEntry has three members describing its location.
// SectionEntry::Address is the address at which the section has been loaded
// into memory in the current (host) process. SectionEntry::LoadAddress is
// the address that the section will have in the target process.
// SectionEntry::ObjAddress is the address of the bits for this section in the
// original emitted object image (also in the current address space).
//
// Relocations will be applied as if the section were loaded at
// SectionEntry::LoadAddress, but they will be applied at an address based
// on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer
// to Target memory contents if they are required for value calculations.
//
// The Value parameter here is the load address of the symbol for the
// relocation to be applied. For relocations which refer to symbols in the
// current object Value will be the LoadAddress of the section in which
// the symbol resides (RE.Addend provides additional information about the
// symbol location). For external symbols, Value will be the address of the
// symbol in the target address space.
void resolveRelocation(const RelocationEntry &RE, uint64_t Value) override {
const SectionEntry &Section = Sections[RE.SectionID];
uint8_t *Target = Section.Address + RE.Offset;
switch (RE.RelType) {
case COFF::IMAGE_REL_AMD64_REL32:
case COFF::IMAGE_REL_AMD64_REL32_1:
case COFF::IMAGE_REL_AMD64_REL32_2:
case COFF::IMAGE_REL_AMD64_REL32_3:
case COFF::IMAGE_REL_AMD64_REL32_4:
case COFF::IMAGE_REL_AMD64_REL32_5: {
uint32_t *TargetAddress = (uint32_t *)Target;
uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
// Delta is the distance from the start of the reloc to the end of the
// instruction with the reloc.
uint64_t Delta = 4 + (RE.RelType - COFF::IMAGE_REL_AMD64_REL32);
Value -= FinalAddress + Delta;
uint64_t Result = Value + RE.Addend;
assert(((int64_t)Result <= INT32_MAX) && "Relocation overflow");
assert(((int64_t)Result >= INT32_MIN) && "Relocation underflow");
*TargetAddress = Result;
break;
}
case COFF::IMAGE_REL_AMD64_ADDR32NB: {
// Note ADDR32NB requires a well-established notion of
// image base. This address must be less than or equal
// to every section's load address, and all sections must be
// within a 32 bit offset from the base.
//
// For now we just set these to zero.
uint32_t *TargetAddress = (uint32_t *)Target;
*TargetAddress = 0;
break;
}
case COFF::IMAGE_REL_AMD64_ADDR64: {
uint64_t *TargetAddress = (uint64_t *)Target;
*TargetAddress = Value + RE.Addend;
break;
}
default:
llvm_unreachable("Relocation type not implemented yet!");
break;
}
}
relocation_iterator processRelocationRef(unsigned SectionID,
relocation_iterator RelI,
const ObjectFile &Obj,
ObjSectionToIDMap &ObjSectionToID,
StubMap &Stubs) override;
StubMap &Stubs) override {
// Find the symbol referred to in the relocation, and
// get its section and offset.
//
// Insist for now that all symbols be resolvable within
// the scope of this object file.
symbol_iterator Symbol = RelI->getSymbol();
if (Symbol == Obj.symbol_end())
report_fatal_error("Unknown symbol in relocation");
unsigned TargetSectionID = 0;
uint64_t TargetOffset = UnknownAddressOrSize;
section_iterator SecI(Obj.section_end());
Symbol->getSection(SecI);
if (SecI == Obj.section_end())
report_fatal_error("Unknown section in relocation");
bool IsCode = SecI->isText();
TargetSectionID = findOrEmitSection(Obj, *SecI, IsCode, ObjSectionToID);
TargetOffset = getSymbolOffset(*Symbol);
// Determine the Addend used to adjust the relocation value.
uint64_t RelType;
Check(RelI->getType(RelType));
uint64_t Offset;
Check(RelI->getOffset(Offset));
uint64_t Addend = 0;
SectionEntry &Section = Sections[SectionID];
uintptr_t ObjTarget = Section.ObjAddress + Offset;
switch (RelType) {
case COFF::IMAGE_REL_AMD64_REL32:
case COFF::IMAGE_REL_AMD64_REL32_1:
case COFF::IMAGE_REL_AMD64_REL32_2:
case COFF::IMAGE_REL_AMD64_REL32_3:
case COFF::IMAGE_REL_AMD64_REL32_4:
case COFF::IMAGE_REL_AMD64_REL32_5:
case COFF::IMAGE_REL_AMD64_ADDR32NB: {
uint32_t *Displacement = (uint32_t *)ObjTarget;
Addend = *Displacement;
break;
}
case COFF::IMAGE_REL_AMD64_ADDR64: {
uint64_t *Displacement = (uint64_t *)ObjTarget;
Addend = *Displacement;
break;
}
default:
break;
}
StringRef TargetName;
Symbol->getName(TargetName);
DEBUG(dbgs() << "\t\tIn Section " << SectionID << " Offset " << Offset
<< " RelType: " << RelType << " TargetName: " << TargetName
<< " Addend " << Addend << "\n");
RelocationEntry RE(SectionID, Offset, RelType, TargetOffset + Addend);
addRelocationForSection(RE, TargetSectionID);
return ++RelI;
}
unsigned getStubAlignment() override { return 1; }
void registerEHFrames() override;
void deregisterEHFrames() override;
void registerEHFrames() override {
if (!MemMgr)
return;
for (auto const &EHFrameSID : UnregisteredEHFrameSections) {
uint8_t *EHFrameAddr = Sections[EHFrameSID].Address;
uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress;
size_t EHFrameSize = Sections[EHFrameSID].Size;
MemMgr->registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
RegisteredEHFrameSections.push_back(EHFrameSID);
}
UnregisteredEHFrameSections.clear();
}
void deregisterEHFrames() override {
// Stub
}
void finalizeLoad(const ObjectFile &Obj,
ObjSectionToIDMap &SectionMap) override;
ObjSectionToIDMap &SectionMap) override {
// Look for and record the EH frame section IDs.
for (const auto &SectionPair : SectionMap) {
const SectionRef &Section = SectionPair.first;
StringRef Name;
Check(Section.getName(Name));
// Note unwind info is split across .pdata and .xdata, so this
// may not be sufficiently general for all users.
if (Name == ".xdata") {
UnregisteredEHFrameSections.push_back(SectionPair.second);
}
}
}
};
} // end namespace llvm