Complete rewrite of this pass to be faster, use less memory, be easier to

understand, and more accurate to boot!  This implements
GlobalModRef/purecse.ll over the previous impl.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15260 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2004-07-27 06:40:37 +00:00
parent a9db34f13c
commit fe98f27e80

View File

@ -8,12 +8,13 @@
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// //
// This simple pass provides alias and mod/ref information for global values // This simple pass provides alias and mod/ref information for global values
// that do not have their address taken. For this simple (but very common) // that do not have their address taken, and keeps track of whether functions
// case, we can provide pretty accurate and useful information. // read or write memory (are "pure"). For this simple (but very common) case,
// we can provide pretty accurate and useful information.
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
#define DEBUG_TYPE "globalsmodref" #define DEBUG_TYPE "globalsmodref-aa"
#include "llvm/Analysis/Passes.h" #include "llvm/Analysis/Passes.h"
#include "llvm/Module.h" #include "llvm/Module.h"
#include "llvm/Pass.h" #include "llvm/Pass.h"
@ -21,6 +22,8 @@
#include "llvm/Constants.h" #include "llvm/Constants.h"
#include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CallGraph.h" #include "llvm/Analysis/CallGraph.h"
#include "llvm/Support/InstIterator.h"
#include "Support/CommandLine.h"
#include "Support/Debug.h" #include "Support/Debug.h"
#include "Support/Statistic.h" #include "Support/Statistic.h"
#include "Support/SCCIterator.h" #include "Support/SCCIterator.h"
@ -34,22 +37,44 @@ namespace {
Statistic<> Statistic<>
NumNonAddrTakenFunctions("globalsmodref-aa", NumNonAddrTakenFunctions("globalsmodref-aa",
"Number of functions without address taken"); "Number of functions without address taken");
Statistic<>
NumNoMemFunctions("globalsmodref-aa",
"Number of functions that do not access memory");
Statistic<>
NumReadMemFunctions("globalsmodref-aa",
"Number of functions that only read memory");
/// FunctionRecord - One instance of this structure is stored for every
/// function in the program. Later, the entries for these functions are
/// removed if the function is found to call an external function (in which
/// case we know nothing about it.
struct FunctionRecord {
/// GlobalInfo - Maintain mod/ref info for all of the globals without
/// addresses taken that are read or written (transitively) by this
/// function.
std::map<GlobalValue*, unsigned> GlobalInfo;
unsigned getInfoForGlobal(GlobalValue *GV) const {
std::map<GlobalValue*, unsigned>::const_iterator I = GlobalInfo.find(GV);
if (I != GlobalInfo.end())
return I->second;
return 0;
}
/// FunctionEffect - Capture whether or not this function reads or writes to
/// ANY memory. If not, we can do a lot of aggressive analysis on it.
unsigned FunctionEffect;
};
/// GlobalsModRef - The actual analysis pass.
class GlobalsModRef : public Pass, public AliasAnalysis { class GlobalsModRef : public Pass, public AliasAnalysis {
/// ModRefFns - One instance of this record is kept for each global without /// NonAddressTakenGlobals - The globals that do not have their addresses
/// its address taken. /// taken.
struct ModRefFns { std::set<GlobalValue*> NonAddressTakenGlobals;
/// RefFns/ModFns - Sets of functions that and write globals.
std::set<Function*> RefFns, ModFns;
};
/// NonAddressTakenGlobals - A map of globals that do not have their
/// addresses taken to their record.
std::map<GlobalValue*, ModRefFns> NonAddressTakenGlobals;
/// FunctionInfo - For each function, keep track of what globals are /// FunctionInfo - For each function, keep track of what globals are
/// modified or read. /// modified or read.
std::map<std::pair<Function*, GlobalValue*>, unsigned> FunctionInfo; std::map<Function*, FunctionRecord> FunctionInfo;
public: public:
bool run(Module &M) { bool run(Module &M) {
@ -73,12 +98,37 @@ namespace {
ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size); ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
bool hasNoModRefInfoForCalls() const { return false; } bool hasNoModRefInfoForCalls() const { return false; }
bool doesNotAccessMemory(Function *F) {
if (FunctionRecord *FR = getFunctionInfo(F))
if (FR->FunctionEffect == 0)
return true;
return AliasAnalysis::doesNotAccessMemory(F);
}
bool onlyReadsMemory(Function *F) {
if (FunctionRecord *FR = getFunctionInfo(F))
if ((FR->FunctionEffect & Mod) == 0)
return true;
return AliasAnalysis::onlyReadsMemory(F);
}
virtual void deleteValue(Value *V); virtual void deleteValue(Value *V);
virtual void copyValue(Value *From, Value *To); virtual void copyValue(Value *From, Value *To);
private: private:
/// getFunctionInfo - Return the function info for the function, or null if
/// the function calls an external function (in which case we don't have
/// anything useful to say about it).
FunctionRecord *getFunctionInfo(Function *F) {
std::map<Function*, FunctionRecord>::iterator I = FunctionInfo.find(F);
if (I != FunctionInfo.end())
return &I->second;
return 0;
}
void AnalyzeGlobals(Module &M); void AnalyzeGlobals(Module &M);
void AnalyzeCallGraph(CallGraph &CG, Module &M); void AnalyzeCallGraph(CallGraph &CG, Module &M);
void AnalyzeSCC(std::vector<CallGraphNode *> &SCC);
bool AnalyzeUsesOfGlobal(Value *V, std::vector<Function*> &Readers, bool AnalyzeUsesOfGlobal(Value *V, std::vector<Function*> &Readers,
std::vector<Function*> &Writers); std::vector<Function*> &Writers);
}; };
@ -100,25 +150,24 @@ void GlobalsModRef::AnalyzeGlobals(Module &M) {
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (I->hasInternalLinkage()) { if (I->hasInternalLinkage()) {
if (!AnalyzeUsesOfGlobal(I, Readers, Writers)) { if (!AnalyzeUsesOfGlobal(I, Readers, Writers)) {
// Remember that we are tracking this global, and the mod/ref fns // Remember that we are tracking this global.
ModRefFns &E = NonAddressTakenGlobals[I]; NonAddressTakenGlobals.insert(I);
E.RefFns.insert(Readers.begin(), Readers.end());
E.ModFns.insert(Writers.begin(), Writers.end());
++NumNonAddrTakenFunctions; ++NumNonAddrTakenFunctions;
} }
Readers.clear(); Writers.clear(); Readers.clear(); Writers.clear();
} }
for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I) for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
// FIXME: it is kinda dumb to track aliasing properties for constant
// globals, it will never be particularly useful anyways, 'cause they can
// never be modified (and the optimizer knows this already)!
if (I->hasInternalLinkage()) { if (I->hasInternalLinkage()) {
if (!AnalyzeUsesOfGlobal(I, Readers, Writers)) { if (!AnalyzeUsesOfGlobal(I, Readers, Writers)) {
// Remember that we are tracking this global, and the mod/ref fns // Remember that we are tracking this global, and the mod/ref fns
ModRefFns &E = NonAddressTakenGlobals[I]; NonAddressTakenGlobals.insert(I);
E.RefFns.insert(Readers.begin(), Readers.end()); for (unsigned i = 0, e = Readers.size(); i != e; ++i)
E.ModFns.insert(Writers.begin(), Writers.end()); FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref;
if (!I->isConstant()) // No need to keep track of writers to constants
for (unsigned i = 0, e = Writers.size(); i != e; ++i)
FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod;
++NumNonAddrTakenGlobalVars; ++NumNonAddrTakenGlobalVars;
} }
Readers.clear(); Writers.clear(); Readers.clear(); Writers.clear();
@ -132,7 +181,7 @@ void GlobalsModRef::AnalyzeGlobals(Module &M) {
bool GlobalsModRef::AnalyzeUsesOfGlobal(Value *V, bool GlobalsModRef::AnalyzeUsesOfGlobal(Value *V,
std::vector<Function*> &Readers, std::vector<Function*> &Readers,
std::vector<Function*> &Writers) { std::vector<Function*> &Writers) {
//if (!isa<PointerType>(V->getType())) return true; if (!isa<PointerType>(V->getType())) return true;
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI) for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
@ -175,67 +224,82 @@ bool GlobalsModRef::AnalyzeUsesOfGlobal(Value *V,
/// AnalyzeCallGraph - At this point, we know the functions where globals are /// AnalyzeCallGraph - At this point, we know the functions where globals are
/// immediately stored to and read from. Propagate this information up the call /// immediately stored to and read from. Propagate this information up the call
/// graph to all callers. /// graph to all callers and compute the mod/ref info for all memory for each
/// function.
void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) { void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
if (NonAddressTakenGlobals.empty()) return; // Don't bother, nothing to do. DEBUG(std::cerr << "GlobalsModRef: Analyze Call Graph\n");
// Invert the NonAddressTakenGlobals map into the FunctionInfo map.
for (std::map<GlobalValue*, ModRefFns>::iterator I =
NonAddressTakenGlobals.begin(), E = NonAddressTakenGlobals.end();
I != E; ++I) {
GlobalValue *GV = I->first;
ModRefFns &MRInfo = I->second;
for (std::set<Function*>::iterator I = MRInfo.RefFns.begin(),
E = MRInfo.RefFns.begin(); I != E; ++I)
FunctionInfo[std::make_pair(*I, GV)] |= Ref;
MRInfo.RefFns.clear();
for (std::set<Function*>::iterator I = MRInfo.ModFns.begin(),
E = MRInfo.ModFns.begin(); I != E; ++I)
FunctionInfo[std::make_pair(*I, GV)] |= Mod;
MRInfo.ModFns.clear();
}
// We do a bottom-up SCC traversal of the call graph. In other words, we // We do a bottom-up SCC traversal of the call graph. In other words, we
// visit all callees before callers (leaf-first). // visit all callees before callers (leaf-first).
for (scc_iterator<CallGraph*> I = scc_begin(&CG), E = scc_end(&CG); for (scc_iterator<CallGraph*> I = scc_begin(&CG), E = scc_end(&CG); I!=E; ++I)
I != E; ++I) { // Do not call AnalyzeSCC on the external function node.
std::map<GlobalValue*, unsigned> ModRefProperties; if ((*I).size() != 1 || (*I)[0]->getFunction())
const std::vector<CallGraphNode *> &SCC = *I; AnalyzeSCC(*I);
}
void GlobalsModRef::AnalyzeSCC(std::vector<CallGraphNode *> &SCC) {
assert(!SCC.empty() && "SCC with no functions?");
FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()];
bool CallsExternal = false;
unsigned FunctionEffect = 0;
// Collect the mod/ref properties due to called functions. We only compute
// one mod-ref set
for (unsigned i = 0, e = SCC.size(); i != e && !CallsExternal; ++i)
for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
CI != E; ++CI)
if (Function *Callee = (*CI)->getFunction()) {
if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) {
// Propagate function effect up.
FunctionEffect |= CalleeFR->FunctionEffect;
// Incorporate callee's effects on globals into our info.
for (std::map<GlobalValue*, unsigned>::iterator GI =
CalleeFR->GlobalInfo.begin(), E = CalleeFR->GlobalInfo.end();
GI != E; ++GI)
FR.GlobalInfo[GI->first] |= GI->second;
// Collect the mod/ref properties due to called functions.
for (unsigned i = 0, e = SCC.size(); i != e; ++i)
for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
CI != E; ++CI) {
if (Function *Callee = (*CI)->getFunction()) {
// Otherwise, combine the callee properties into our accumulated set.
std::map<std::pair<Function*, GlobalValue*>, unsigned>::iterator
CI = FunctionInfo.lower_bound(std::make_pair(Callee,
(GlobalValue*)0));
for (;CI != FunctionInfo.end() && CI->first.first == Callee; ++CI)
ModRefProperties[CI->first.second] |= CI->second;
} else { } else {
// For now assume that external functions could mod/ref anything, CallsExternal = true;
// since they could call into an escaping function that mod/refs an break;
// internal. FIXME: We need better tracking!
for (std::map<GlobalValue*, ModRefFns>::iterator GI =
NonAddressTakenGlobals.begin(),
E = NonAddressTakenGlobals.end(); GI != E; ++GI)
ModRefProperties[GI->first] = ModRef;
goto Out;
} }
} else {
CallsExternal = true;
break;
} }
Out:
// Set all functions in the CFG to have these properties. FIXME: it would // If this SCC calls an external function, we can't say anything about it, so
// be better to use union find to only store these properties once, // remove all SCC functions from the FunctionInfo map.
// PARTICULARLY if it's the universal set. if (CallsExternal) {
for (unsigned i = 0, e = SCC.size(); i != e; ++i) for (unsigned i = 0, e = SCC.size(); i != e; ++i)
if (Function *F = SCC[i]->getFunction()) { FunctionInfo.erase(SCC[i]->getFunction());
for (std::map<GlobalValue*, unsigned>::iterator I = return;
ModRefProperties.begin(), E = ModRefProperties.end();
I != E; ++I)
FunctionInfo[std::make_pair(F, I->first)] = I->second;
}
} }
// Otherwise, unless we already know that this function mod/refs memory, scan
// the function bodies to see if there are any explicit loads or stores.
if (FunctionEffect != ModRef) {
for (unsigned i = 0, e = SCC.size(); i != e && FunctionEffect != ModRef;++i)
for (inst_iterator II = inst_begin(SCC[i]->getFunction()),
E = inst_end(SCC[i]->getFunction());
II != E && FunctionEffect != ModRef; ++II)
if (isa<LoadInst>(*II))
FunctionEffect |= Ref;
else if (isa<StoreInst>(*II))
FunctionEffect |= Mod;
}
if ((FunctionEffect & Mod) == 0)
++NumReadMemFunctions;
if (FunctionEffect == 0)
++NumNoMemFunctions;
FR.FunctionEffect = FunctionEffect;
// Finally, now that we know the full effect on this SCC, clone the
// information to each function in the SCC.
for (unsigned i = 1, e = SCC.size(); i != e; ++i)
FunctionInfo[SCC[i]->getFunction()] = FR;
} }
@ -244,7 +308,7 @@ void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
/// the specified value points to. If the value points to, or is derived from, /// the specified value points to. If the value points to, or is derived from,
/// a global object, return it. /// a global object, return it.
static const GlobalValue *getUnderlyingObject(const Value *V) { static const GlobalValue *getUnderlyingObject(const Value *V) {
//if (!isa<PointerType>(V->getType())) return 0; if (!isa<PointerType>(V->getType())) return 0;
// If we are at some type of object... return it. // If we are at some type of object... return it.
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV; if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
@ -286,15 +350,13 @@ GlobalsModRef::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
unsigned Known = ModRef; unsigned Known = ModRef;
// If we are asking for mod/ref info of a direct call with a pointer to a // If we are asking for mod/ref info of a direct call with a pointer to a
// global, return information if we have it. // global we are tracking, return information if we have it.
if (GlobalValue *GV = const_cast<GlobalValue*>(getUnderlyingObject(P))) if (GlobalValue *GV = const_cast<GlobalValue*>(getUnderlyingObject(P)))
if (GV->hasInternalLinkage()) if (GV->hasInternalLinkage())
if (Function *F = CS.getCalledFunction()) { if (Function *F = CS.getCalledFunction())
std::map<std::pair<Function*, GlobalValue*>, unsigned>::iterator if (NonAddressTakenGlobals.count(GV))
it = FunctionInfo.find(std::make_pair(F, GV)); if (FunctionRecord *FR = getFunctionInfo(F))
if (it != FunctionInfo.end()) Known = FR->getInfoForGlobal(GV);
Known = it->second;
}
if (Known == NoModRef) if (Known == NoModRef)
return NoModRef; // No need to query other mod/ref analyses return NoModRef; // No need to query other mod/ref analyses
@ -306,20 +368,9 @@ GlobalsModRef::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
// Methods to update the analysis as a result of the client transformation. // Methods to update the analysis as a result of the client transformation.
// //
void GlobalsModRef::deleteValue(Value *V) { void GlobalsModRef::deleteValue(Value *V) {
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
std::map<GlobalValue*, ModRefFns>::iterator I = NonAddressTakenGlobals.erase(GV);
NonAddressTakenGlobals.find(GV);
if (I != NonAddressTakenGlobals.end())
NonAddressTakenGlobals.erase(I);
}
} }
void GlobalsModRef::copyValue(Value *From, Value *To) { void GlobalsModRef::copyValue(Value *From, Value *To) {
if (GlobalValue *FromGV = dyn_cast<GlobalValue>(From))
if (GlobalValue *ToGV = dyn_cast<GlobalValue>(To)) {
std::map<GlobalValue*, ModRefFns>::iterator I =
NonAddressTakenGlobals.find(FromGV);
if (I != NonAddressTakenGlobals.end())
NonAddressTakenGlobals[ToGV] = I->second;
}
} }