All string occurences for "sparc", "Sparc" and "SPARC" were already
replaced, with the exception of ELF constans in the object file
descriptor as it will get removed later on (we won't be building ELF
object files for the 6502).
Remove some unnecessary explicit special members in Hexagon that, once
removed, allow the other implicit special members to be used without
depending on deprecated features.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243825 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: Also test 64-bit integers, except shifts for now which are broken because isel dislikes the 32-bit truncate that precedes them.
Reviewers: sunfish
Subscribers: llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D11699
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243822 91177308-0d34-0410-b5e6-96231b3b80d8
Various targets use std::swap on specific MCAsmOperands (ARM and
possibly Hexagon as well). It might be helpful to mark those subclasses
as final, to ensure that the availability of move/copy operations can't
lead to slicing. (same sort of requirements as the non-vitual dtor -
protected or a final class)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243820 91177308-0d34-0410-b5e6-96231b3b80d8
This commit fixes a bug in the class 'SIInstrInfo' where the implicit register
machine operands were added to a machine instruction in an incorrect order -
the implicit uses were added before the implicit defs.
I found this bug while working on moving the implicit register operand
verification code from the MIR parser to the machine verifier.
This commit also makes the method 'addImplicitDefUseOperands' in the machine
instruction class public so that it can be reused in the 'SIInstrInfo' class.
Reviewers: Matt Arsenault
Differential Revision: http://reviews.llvm.org/D11689
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243799 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
For example, in
struct S {
int *x;
int *y;
};
__global__ void foo(S s) {
int *b = s.y;
// use b
}
"b" is guaranteed to point to global. NVPTX should emit ld.global/st.global for
accessing "b".
Reviewers: jholewinski
Subscribers: llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11505
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243790 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Use -1 as numoperands for the return SDTypeProfile, denoting that return is variadic. Note that the patterns in InstrControl.td still need to match the inputs, so this ins't an "anything goes" variadic on ret!
The next step will be to handle other local types (not just int32).
Reviewers: sunfish
Subscribers: llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D11692
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243783 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This prints assembly for int32 integer operations defined in WebAssemblyInstrInteger.td only, with major caveats:
- The operation names are currently incorrect.
- Other integer and floating-point types will be added later.
- The printer isn't factored out to handle recursive AST code yet, since it can't even handle control flow anyways.
- The assembly format isn't full s-expressions yet either, this will be added later.
- This currently disables PrologEpilogCodeInserter as well as MachineCopyPropagation becasue they don't like virtual registers, which WebAssembly likes quite a bit. This will be fixed by factoring out NVPTX's change (currently a fork of PrologEpilogCodeInserter).
Reviewers: sunfish
Subscribers: llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D11671
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243763 91177308-0d34-0410-b5e6-96231b3b80d8
Add i16, i32, i64 imul machine instructions to the list of reassociation
candidates.
A new bit of logic is needed to handle integer instructions: they have an
implicit EFLAGS operand, so we have to make sure it's dead in order to do
any reassociation with integer ops.
Differential Revision: http://reviews.llvm.org/D11660
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243756 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Favor the extended reg patterns over the shifted reg patterns that match
only the operand shift and not the full sign/zero extend and shift.
Reviewers: jmolloy, t.p.northover
Subscribers: mcrosier, aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D11569
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243753 91177308-0d34-0410-b5e6-96231b3b80d8
For a modulo (reminder) operation,
clang -target armv7-none-linux-gnueabi generates "__modsi3"
clang -target armv7-none-eabi generates "__aeabi_idivmod"
clang -target armv7-linux-androideabi generates "__modsi3"
Android bionic libc doesn't provide a __modsi3, instead it provides a
"__aeabi_idivmod". This patch fixes the LLVM ARMISelLowering to generate
the correct call when ever there is a modulo operation.
Differential Revision: http://reviews.llvm.org/D11661
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243717 91177308-0d34-0410-b5e6-96231b3b80d8
Fixing MinSize attribute handling was discussed in D11363.
This is a prerequisite patch to doing that.
The handling of OptSize when lowering mem* functions was broken
on Darwin because it wants to ignore -Os for these cases, but the
existing logic also made it ignore -Oz (MinSize).
The Linux change demonstrates a widespread problem. The backend
doesn't usually recognize the MinSize attribute by itself; it
assumes that if the MinSize attribute exists, then the OptSize
attribute must also exist.
Fixing this more generally will be a follow-on patch or two.
Differential Revision: http://reviews.llvm.org/D11568
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243693 91177308-0d34-0410-b5e6-96231b3b80d8
I'm not sure what reasons the comment here could have
had for not setting these. Without these set, there is
an assertion hit during DWARF emission.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243661 91177308-0d34-0410-b5e6-96231b3b80d8
Copy implementation of applyFixup from AArch64 with AArch64 bits
ripped out.
Tests will be included with a later commit. Several other
problems must be fixed before binary debug info emission
will work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243660 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Replace the switch on instruction opcode with a switch on register size.
This way we don't need to update the switch statement when we add new
SMRD variants.
Reviewers: arsenm
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11601
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243652 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This function is never called. isReallyTriviallyReMaterializable() is
the function that should be implemented instead.
Reviewers: arsenm
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11620
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243651 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This hidden option would disable code generation through FastISel by
default. It was removed from the available options and from the
Fast-ISel tests that required it in order to run the tests.
Reviewers: dsanders
Subscribers: qcolombet, llvm-commits
Differential Revision: http://reviews.llvm.org/D11610
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243638 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Previously, we would sign-extend non-boolean negative constants and
zero-extend otherwise. This was problematic for PHI instructions with
negative values that had a type with bitwidth less than that of the
register used for materialization.
More specifically, ComputePHILiveOutRegInfo() assumes the constants
present in a PHI node are zero extended in their container and
afterwards deduces the known bits.
For example, previously we would materialize an i16 -4 with the
following instruction:
addiu $r, $zero, -4
The register would end-up with the 32-bit 2's complement representation
of -4. However, ComputePHILiveOutRegInfo() would generate a constant
with the upper 16-bits set to zero. The SelectionDAG builder would use
that information to generate an AssertZero node that would remove any
subsequent trunc & zero_extend nodes.
In theory, we should modify ComputePHILiveOutRegInfo() to consult
target-specific hooks about the way they prefer to materialize the
given constants. However, git-blame reports that this specific code
has not been touched since 2011 and it seems to be working well for every
target so far.
Reviewers: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11592
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243636 91177308-0d34-0410-b5e6-96231b3b80d8
Bonus change to remove emacs major mode marker from SystemZMachineFunctionInfo.cpp because emacs already knows it's C++ from the extension. Also fix typo "appeary" in AMDGPUMCAsmInfo.h.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243585 91177308-0d34-0410-b5e6-96231b3b80d8
on suggestions. Currently the function is only used for inline purposes
and this is more descriptive for the use.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243578 91177308-0d34-0410-b5e6-96231b3b80d8
It's potentially more efficient on Cyclone, and from the optimization guides &
schedulers looks like it has no effect on Cortex-A53 or A57. In general you'd
expect a MOV to be about the most efficient instruction with its semantics,
even though the official "UXTW" alias is really a UBFX.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243576 91177308-0d34-0410-b5e6-96231b3b80d8
This patch vectorizes the v2i64/v4i64 ASHR shift operations - the last remaining integer vector shifts that are still being transferred to/from the scalar unit to be completed.
Differential Revision: http://reviews.llvm.org/D11439
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243569 91177308-0d34-0410-b5e6-96231b3b80d8
No functional change because "lsl #12" is actually encoded as 12, but one less
bug if someone ever decides to change that for the giggles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243536 91177308-0d34-0410-b5e6-96231b3b80d8
Given certain shuffle-vector masks, LLVM emits splat instructions
which splat the wrong bytes from the source register. The issue is
that the function PPC::isSplatShuffleMask() in PPCISelLowering.cpp
does not ensure that the splat pattern found is requesting bytes that
are aligned on an EltSize boundary. This patch detects this situation
as not a valid splat mask, resulting in a permute being generated
instead of a splat.
Patch and test case by Tyler Kenney, cleaned up a bit by me.
This is a simple bug fix that would be good to incorporate into 3.7.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243519 91177308-0d34-0410-b5e6-96231b3b80d8
This commit defines subtarget feature strict-align and uses it instead of
cl::opt -aarch64-strict-align to decide whether strict alignment should be
forced.
rdar://problem/21529937
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243516 91177308-0d34-0410-b5e6-96231b3b80d8
This fix was suggested as part of D11345 and is part of fixing PR24141.
With this change, we can avoid walking the uses of a divisor node if the target
doesn't want the combineRepeatedFPDivisors transform in the first place.
There is no NFC-intended other than that.
Differential Revision: http://reviews.llvm.org/D11531
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243498 91177308-0d34-0410-b5e6-96231b3b80d8
This commit defines subtarget feature strict-align and uses it instead of
cl::opt -arm-strict-align to decide whether strict alignment should be
forced. Also, remove the logic that was checking the OS and architecture
as clang is now responsible for setting strict-align based on the command
line options specified and the target architecute and OS.
rdar://problem/21529937
http://reviews.llvm.org/D11470
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243493 91177308-0d34-0410-b5e6-96231b3b80d8
Reapply 243271 with more fixes; although we are not handling multiple
sources with coalescable copies, we were not properly skipping this
case.
- Teaches the ValueTracker in the PeepholeOptimizer to look through PHI
instructions.
- Add findNextSourceAndRewritePHI method to lookup into multiple sources
returnted by the ValueTracker and rewrite PHIs with new sources.
With these changes we can find more register sources and rewrite more
copies to allow coaslescing of bitcast instructions. Hence, we eliminate
unnecessary VR64 <-> GR64 copies in x86, but it could be extended to
other archs by marking "isBitcast" on target specific instructions. The
x86 example follows:
A:
psllq %mm1, %mm0
movd %mm0, %r9
jmp C
B:
por %mm1, %mm0
movd %mm0, %r9
jmp C
C:
movd %r9, %mm0
pshufw $238, %mm0, %mm0
Becomes:
A:
psllq %mm1, %mm0
jmp C
B:
por %mm1, %mm0
jmp C
C:
pshufw $238, %mm0, %mm0
Differential Revision: http://reviews.llvm.org/D11197
rdar://problem/20404526
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243486 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Currently, we support only the MIPS O32 ABI calling convention for call
lowering. With this change we avoid using the O32 calling convetion for
lowering calls marked as using the fast calling convention.
Reviewers: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11515
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243485 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Generate correct code for the select instruction by zero-extending
it's boolean/condition operand to GPR-width. This is necessary because
the conditional-move instructions operate on the whole register.
Reviewers: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11506
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243469 91177308-0d34-0410-b5e6-96231b3b80d8