Summary:
We need to add a runtime memcheck for pair of accesses (x,y) where at least one of x and y
are writes.
Assuming we have w writes and r reads, currently this number is estimated as being
w* (w+r-1). This estimation will count (write,write) pairs twice and will overestimate
the number of checks required.
This change adds a getNumberOfChecks method to RuntimePointerCheck, which
will count the number of runtime checks needed (similar in implementation to
needsAnyChecking) and uses it to produce the correct number of runtime checks.
Test Plan:
llvm test suite
spec2k
spec2k6
Performance results: no changes observed (not surprising since the formula for 1 writer is basically the same, which would covers most cases - at least with the current check limit).
Reviewers: anemet
Reviewed By: anemet
Subscribers: mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D10217
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239295 91177308-0d34-0410-b5e6-96231b3b80d8
Interleaved memory accesses are grouped and vectorized into vector load/store and shufflevector.
E.g. for (i = 0; i < N; i+=2) {
a = A[i]; // load of even element
b = A[i+1]; // load of odd element
... // operations on a, b, c, d
A[i] = c; // store of even element
A[i+1] = d; // store of odd element
}
The loads of even and odd elements are identified as an interleave load group, which will be transfered into vectorized IRs like:
%wide.vec = load <8 x i32>, <8 x i32>* %ptr
%vec.even = shufflevector <8 x i32> %wide.vec, <8 x i32> undef, <4 x i32> <i32 0, i32 2, i32 4, i32 6>
%vec.odd = shufflevector <8 x i32> %wide.vec, <8 x i32> undef, <4 x i32> <i32 1, i32 3, i32 5, i32 7>
The stores of even and odd elements are identified as an interleave store group, which will be transfered into vectorized IRs like:
%interleaved.vec = shufflevector <4 x i32> %vec.even, %vec.odd, <8 x i32> <i32 0, i32 4, i32 1, i32 5, i32 2, i32 6, i32 3, i32 7>
store <8 x i32> %interleaved.vec, <8 x i32>* %ptr
This optimization is currently disabled by defaut. To try it by adding '-enable-interleaved-mem-accesses=true'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239291 91177308-0d34-0410-b5e6-96231b3b80d8
The new naming is (to me) much easier to understand. Here is a summary
of the new state of the world:
- '*Threshold' is the threshold for full unrolling. It is measured
against the estimated unrolled cost as computed by getUserCost in TTI
(or CodeMetrics, etc). We will exceed this threshold when unrolling
loops where unrolling exposes a significant degree of simplification
of the logic within the loop.
- '*PercentDynamicCostSavedThreshold' is the percentage of the loop's
estimated dynamic execution cost which needs to be saved by unrolling
to apply a discount to the estimated unrolled cost.
- '*DynamicCostSavingsDiscount' is the discount applied to the estimated
unrolling cost when the dynamic savings are expected to be high.
When actually analyzing the loop, we now produce both an estimated
unrolled cost, and an estimated rolled cost. The rolled cost is notably
a dynamic estimate based on our analysis of the expected execution of
each iteration.
While we're still working to build up the infrastructure for making
these estimates, to me it is much more clear *how* to make them better
when they have reasonably descriptive names. For example, we may want to
apply estimated (from heuristics or profiles) dynamic execution weights
to the *dynamic* cost estimates. If we start doing that, we would also
need to track the static unrolled cost and the dynamic unrolled cost, as
only the latter could reasonably be weighted by profile information.
This patch is sadly not without functionality change for the new unroll
analysis logic. Buried in the heuristic management were several things
that surprised me. For example, we never subtracted the optimized
instruction count off when comparing against the unroll heursistics!
I don't know if this just got lost somewhere along the way or what, but
with the new accounting of things, this is much easier to keep track of
and we use the post-simplification cost estimate to compare to the
thresholds, and use the dynamic cost reduction ratio to select whether
we can exceed the baseline threshold.
The old values of these flags also don't necessarily make sense. My
impression is that none of these thresholds or discounts have been tuned
yet, and so they're just arbitrary placehold numbers. As such, I've not
bothered to adjust for the fact that this is now a discount and not
a tow-tier threshold model. We need to tune all these values once the
logic is ready to be enabled.
Differential Revision: http://reviews.llvm.org/D9966
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239164 91177308-0d34-0410-b5e6-96231b3b80d8
port it to the new pass manager.
All this does is extract the inner "location" class used by AA into its
own full fledged type. This seems *much* cleaner as MemoryDependence and
soon MemorySSA also use this heavily, and it doesn't make much sense
being inside the AA infrastructure.
This will also make it much easier to break apart the AA infrastructure
into something that stands on its own rather than using the analysis
group design.
There are a few places where this makes APIs not make sense -- they were
taking an AliasAnalysis pointer just to build locations. I'll try to
clean those up in follow-up commits.
Differential Revision: http://reviews.llvm.org/D10228
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239003 91177308-0d34-0410-b5e6-96231b3b80d8
Unreachable values may use themselves in strange ways due to their
dominance property. Attempting to translate through them can lead to
infinite recursion, crashing LLVM. Instead, claim that we weren't able
to translate the value.
This fixes PR23096.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238702 91177308-0d34-0410-b5e6-96231b3b80d8
If the type isn't trivially moveable emplace can skip a potentially
expensive move. It also saves a couple of characters.
Call sites were found with the ASTMatcher + some semi-automated cleanup.
memberCallExpr(
argumentCountIs(1), callee(methodDecl(hasName("push_back"))),
on(hasType(recordDecl(has(namedDecl(hasName("emplace_back")))))),
hasArgument(0, bindTemporaryExpr(
hasType(recordDecl(hasNonTrivialDestructor())),
has(constructExpr()))),
unless(isInTemplateInstantiation()))
No functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238602 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
In continuation to an earlier commit to DependenceAnalysis.cpp by jingyue (r222100), the type for all subscripts in a coupled group need to be the same since constraints from one subscript may be propagated to another during testing. During testing, new SCEVs may be created and the operands for these need to be the same.
This patch extends unifySubscriptType() to work on lists of subscript pairs, ensuring a common extended type for all of them.
Test Plan:
Added a test case to NonCanonicalizedSubscript.ll which causes dependence analysis to crash without this fix.
All regression tests pass.
Reviewers: spop, sebpop, jingyue
Reviewed By: jingyue
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9698
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238573 91177308-0d34-0410-b5e6-96231b3b80d8
BranchProbabilityInfo was leaking 3MB of memory when running 'opt -O2 verify-uselistorder.lto.bc'. This was due to the Weights member not being cleared once the pass is no longer needed.
This adds the releaseMemory override to clear that field. The other fields are cleared at the end of runOnFunction so can stay there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238462 91177308-0d34-0410-b5e6-96231b3b80d8
Now that Intrinsic::ID is a typed enum, we can forward declare it and so return it from this method.
This updates all users which were either using an unsigned to store it, or had a now unnecessary cast.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237810 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Allow hoisting of loads from values marked with dereferenceable_or_null
attribute. For values marked with the attribute perform
context-sensitive analysis to determine whether it's known-non-null or
not.
Patch by Artur Pilipenko!
Reviewers: hfinkel, sanjoy, reames
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9253
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237593 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This allows other passes (such as SLSR) to compute the SCEV expression for an
imaginary GEP.
Test Plan: no regression
Reviewers: atrick, sanjoy
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9786
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237589 91177308-0d34-0410-b5e6-96231b3b80d8
When dependence analysis encounters a non-constant distance between
memory accesses it aborts the analysis and falls back to run-time checks
only. In this case we weren't resetting the array of dependences.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237574 91177308-0d34-0410-b5e6-96231b3b80d8
This teaches the min/max idiom detector in ValueTracking to see through
casts such as SExt/ZExt/Trunc. SCEV can already do this, so we're bringing
non-SCEV analyses up to the same level.
The returned LHS/RHS will not match the type of the original SelectInst
any more, so a CastOp is returned too to inform the caller how to
convert to the SelectInst's type.
No in-tree users yet; this will be used by InstCombine in a followup.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237452 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Extract method haveNoCommonBitsSet so that we don't have to duplicate this logic in
InstCombine and SeparateConstOffsetFromGEP.
This patch also makes SeparateConstOffsetFromGEP more precise by passing
DominatorTree to computeKnownBits.
Test Plan: value-tracking-domtree.ll that tests ValueTracking indeed leverages dominating conditions
Reviewers: broune, meheff, majnemer
Reviewed By: majnemer
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D9734
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237407 91177308-0d34-0410-b5e6-96231b3b80d8
ValueTracking.
This matching functionality is useful in more than just InstCombine, so
make it available in ValueTracking.
NFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236998 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
I noticed this bug when deubging a WIP on LSR. I wonder whether and how we
should add a regression test for this.
Test Plan: no tests failed.
Reviewers: atrick
Subscribers: hfinkel, llvm-commits
Differential Revision: http://reviews.llvm.org/D9536
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236887 91177308-0d34-0410-b5e6-96231b3b80d8
The patch disabled unrolling in loop vectorization pass when VF==1 on x86 architecture,
by setting MaxInterleaveFactor to 1. Unrolling in loop vectorization pass may introduce
the cost of overflow check, memory boundary check and extra prologue/epilogue code when
regular unroller will unroll the loop another time. Disable it when VF==1 remove the
unnecessary cost on x86. The same can be done for other platforms after verifying
interleaving/memory bound checking to be not perf critical on those platforms.
Differential Revision: http://reviews.llvm.org/D9515
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236613 91177308-0d34-0410-b5e6-96231b3b80d8
Specifically, if a pointer accesses different underlying objects in each
iteration, don't look through the phi node defining the pointer.
The motivating case is the underlyling-objects-2.ll testcase. Consider
the loop nest:
int **A;
for (i)
for (j)
A[i][j] = A[i-1][j] * B[j]
This loop is transformed by Load-PRE to stash away A[i] for the next
iteration of the outer loop:
Curr = A[0]; // Prev_0
for (i: 1..N) {
Prev = Curr; // Prev = PHI (Prev_0, Curr)
Curr = A[i];
for (j: 0..N)
Curr[j] = Prev[j] * B[j]
}
Since A[i] and A[i-1] are likely to be independent pointers,
getUnderlyingObjects should not assume that Curr and Prev share the same
underlying object in the inner loop.
If it did we would try to dependence-analyze Curr and Prev and the
analysis of the corresponding SCEVs would fail with non-constant
distance.
To fix this, the getUnderlyingObjects API is extended with an optional
LoopInfo parameter. This is effectively what controls whether we want
the above behavior or the original. Currently, I only changed to use
this approach for LoopAccessAnalysis.
The other testcase is to guard the opposite case where we do want to
look through the loop PHI. If we step through an array by incrementing
a pointer, the underlying object is the incoming value of the phi as the
loop is entered.
Fixes rdar://problem/19566729
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235634 91177308-0d34-0410-b5e6-96231b3b80d8
Move isDereferenceablePointer function to Analysis. This function recursively tracks dereferencability over a chain of values like other functions in ValueTracking.
This refactoring is motivated by further changes to support dereferenceable_or_null attribute (http://reviews.llvm.org/D8650). isDereferenceablePointer will be extended to perform context-sensitive analysis and IR is not a good place to have such functionality.
Patch by: Artur Pilipenko <apilipenko@azulsystems.com>
Differential Revision: reviews.llvm.org/D9075
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235611 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
MemorySSA uses this algorithm as well, and this enables us to reuse the code in both places.
There are no actual algorithm or datastructure changes in here, just code movement.
Reviewers: qcolombet, chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9118
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235406 91177308-0d34-0410-b5e6-96231b3b80d8
Bring function documentation for ScalarEvolutionExpander up to code by
not repeating the function name in the comment documenting
functionality. Reflow the edited comments where needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234847 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Runtime unrolling of loops needs to emit an expression to compute the
loop's runtime trip-count. Avoid runtime unrolling if this computation
will be expensive.
Depends on D8993.
Reviewers: atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8994
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234846 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Move isHighCostExpansion from IndVarSimplify to SCEVExpander. This
exposed function will be used in a subsequent change.
Reviewers: bogner, atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8995
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234844 91177308-0d34-0410-b5e6-96231b3b80d8
The patch is generated using clang-tidy misc-use-override check.
This command was used:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py \
-checks='-*,misc-use-override' -header-filter='llvm|clang' \
-j=32 -fix -format
http://reviews.llvm.org/D8925
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234679 91177308-0d34-0410-b5e6-96231b3b80d8
CallSite roughly behaves as a common base CallInst and InvokeInst. Bring
the behavior closer to that model by making upcasts explicit. Downcasts
remain implicit and work as before.
Following dyn_cast as a mental model checking whether a Value *V isa
CallSite now looks like this:
if (auto CS = CallSite(V)) // think dyn_cast
instead of:
if (CallSite CS = V)
This is an extra token but I think it is slightly clearer. Making the
ctor explicit has the advantage of not accidentally creating nullptr
CallSites, e.g. when you pass a Value * to a function taking a CallSite
argument.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234601 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Some optimizations such as jump threading and loop unswitching can negatively
affect performance when applied to divergent branches. The divergence analysis
added in this patch conservatively estimates which branches in a GPU program
can diverge. This information can then help LLVM to run certain optimizations
selectively.
Test Plan: test/Analysis/DivergenceAnalysis/NVPTX/diverge.ll
Reviewers: resistor, hfinkel, eliben, meheff, jholewinski
Subscribers: broune, bjarke.roune, madhur13490, tstellarAMD, dberlin, echristo, jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D8576
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234567 91177308-0d34-0410-b5e6-96231b3b80d8
(Re-apply r234361 with a fix and a testcase for PR23157)
Both run-time pointer checking and the dependence analysis are capable
of dealing with uniform addresses. I.e. it's really just an orthogonal
property of the loop that the analysis computes.
Run-time pointer checking will only try to reason about SCEVAddRec
pointers or else gives up. If the uniform pointer turns out the be a
SCEVAddRec in an outer loop, the run-time checks generated will be
correct (start and end bounds would be equal).
In case of the dependence analysis, we work again with SCEVs. When
compared against a loop-dependent address of the same underlying object,
the difference of the two SCEVs won't be constant. This will result in
returning an Unknown dependence for the pair.
When compared against another uniform access, the difference would be
constant and we should return the right type of dependence
(forward/backward/etc).
The changes also adds support to query this property of the loop and
modify the vectorizer to use this.
Patch by Ashutosh Nema!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234424 91177308-0d34-0410-b5e6-96231b3b80d8
Both run-time pointer checking and the dependence analysis are capable
of dealing with uniform addresses. I.e. it's really just an orthogonal
property of the loop that the analysis computes.
Run-time pointer checking will only try to reason about SCEVAddRec
pointers or else gives up. If the uniform pointer turns out the be a
SCEVAddRec in an outer loop, the run-time checks generated will be
correct (start and end bounds would be equal).
In case of the dependence analysis, we work again with SCEVs. When
compared against a loop-dependent address of the same underlying object,
the difference of the two SCEVs won't be constant. This will result in
returning an Unknown dependence for the pair.
When compared against another uniform access, the difference would be
constant and we should return the right type of dependence
(forward/backward/etc).
The changes also adds support to query this property of the loop and
modify the vectorizer to use this.
Patch by Ashutosh Nema!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234361 91177308-0d34-0410-b5e6-96231b3b80d8
Require the pointee type to be passed explicitly and assert that it is
correct. For now it's possible to pass nullptr here (and I've done so in
a few places in this patch) but eventually that will be disallowed once
all clients have been updated or removed. It'll be a long road to get
all the way there... but if you have the cahnce to update your callers
to pass the type explicitly without depending on a pointer's element
type, that would be a good thing to do soon and a necessary thing to do
eventually.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233938 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change teaches ScalarEvolution::isLoopBackedgeGuardedByCond to look
at edges within the loop body that dominate the latch. We don't do an
exhaustive search for all possible edges, but only a quick walk up the
dom tree.
This re-lands r233447. r233447 was reverted because it caused massive
compile-time regressions. This change has a fix for the same issue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233829 91177308-0d34-0410-b5e6-96231b3b80d8