1389 Commits

Author SHA1 Message Date
Matt Arsenault
4bacfe2095 Add generic fmad DAG node.
This allows sharing of FMA forming combines to work
with instructions that have the same semantics as a separate
multiply and add.

This is expand by default, and only formed post legalization
so it shouldn't have much impact on targets that do not want it.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230070 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-20 22:10:33 +00:00
Ahmed Bougacha
953c5c9458 [CodeGen] Use ArrayRef instead of std::vector&. NFC.
The former lets us use SmallVectors.  Do so in ARM and AArch64.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229925 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-19 23:13:10 +00:00
Chandler Carruth
a8fb39af83 [x86,sdag] Two interrelated changes to the x86 and sdag code.
First, don't combine bit masking into vector shuffles (even ones the
target can handle) once operation legalization has taken place. Custom
legalization of vector shuffles may exist for these patterns (making the
predicate return true) but that custom legalization may in some cases
produce the exact bit math this matches. We only really want to handle
this prior to operation legalization.

However, the x86 backend, in a fit of awesome, relied on this. What it
would do is mark VSELECTs as expand, which would turn them into
arithmetic, which this would then match back into vector shuffles, which
we would then lower properly. Amazing.

Instead, the second change is to teach the x86 backend to directly form
vector shuffles from VSELECT nodes with constant conditions, and to mark
all of the vector types we support lowering blends as shuffles as custom
VSELECT lowering. We still mark the forms which actually support
variable blends as *legal* so that the custom lowering is bypassed, and
the legal lowering can even be used by the vector shuffle legalization
(yes, i know, this is confusing. but that's how the patterns are
written).

This makes the VSELECT lowering much more sensible, and in fact should
fix a bunch of bugs with it. However, as you'll see in the test cases,
right now what it does is point out the *hilarious* deficiency of the
new vector shuffle lowering when it comes to blends. Fortunately, my
very next patch fixes that. I can't submit it yet, because that patch,
somewhat obviously, forms the exact and/or pattern that the DAG combine
is matching here! Without this patch, teaching the vector shuffle
lowering to produce the right code infloops in the DAG combiner. With
this patch alone, we produce terrible code but at least lower through
the right paths. With both patches, all the regressions here should be
fixed, and a bunch of the improvements (like using 2 shufps with no
memory loads instead of 2 andps with memory loads and an orps) will
stay. Win!

There is one other change worth noting here. We had hilariously wrong
vectorization cost estimates for vselect because we fell through to the
code path that assumed all "expand" vector operations are scalarized.
However, the "expand" lowering of VSELECT is vector bit math, most
definitely not scalarized. So now we go back to the correct if horribly
naive cost of "1" for "not scalarized". If anyone wants to add actual
modeling of shuffle costs, that would be cool, but this seems an
improvement on its own. Note the removal of 16 and 32 "costs" for doing
a blend. Even in SSE2 we can blend in fewer than 16 instructions. ;] Of
course, we don't right now because of OMG bad code, but I'm going to fix
that. Next patch. I promise.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229835 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-19 10:36:19 +00:00
Sanjay Patel
1115b2c27e Canonicalize splats as build_vectors (PR22283)
This is a follow-on patch to:
http://reviews.llvm.org/D7093

That patch canonicalized constant splats as build_vectors, 
and this patch removes the constant check so we can canonicalize
all splats as build_vectors.

This fixes the 2nd test case in PR22283:
http://llvm.org/bugs/show_bug.cgi?id=22283

The unfortunate code duplication between SelectionDAG and DAGCombiner
is discussed in the earlier patch review. At least this patch is just
removing code...

This improves an existing x86 AVX test and changes codegen in an ARM test.

Differential Revision: http://reviews.llvm.org/D7389


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229511 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-17 16:54:32 +00:00
Benjamin Kramer
1a50a12b43 Prefer SmallVector::append/insert over push_back loops.
Same functionality, but hoists the vector growth out of the loop.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229500 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-17 15:29:18 +00:00
Mehdi Amini
2deb1d0b54 SelectionDAG: fold (fp_to_u/sint (s/uint_to_fp)) here too
Update SPARC tests to match.

From: Fiona Glaser <fglaser@apple.com>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229438 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-16 21:47:58 +00:00
Chandler Carruth
5ee516549f [x86] Fix PR22377, a regression with the new vector shuffle legality
test.

This was just a matter of the DAG combine for vector shuffles being too
aggressive. This is a bit of a grey area, but I think generally if we
can re-use intermediate shuffles, we should. Certainly, given the test
cases I have available, this seems like the right call.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229285 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-15 07:01:10 +00:00
Duncan P. N. Exon Smith
9de77c7eca CodeGen: Canonicalize access to function attributes, NFC
Canonicalize access to function attributes to use the simpler API.

getAttributes().getAttribute(AttributeSet::FunctionIndex, Kind)
  => getFnAttribute(Kind)

getAttributes().hasAttribute(AttributeSet::FunctionIndex, Kind)
  => hasFnAttribute(Kind)

Also, add `Function::getFnStackAlignment()`, and canonicalize:

getAttributes().getStackAlignment(AttributeSet::FunctionIndex)
  => getFnStackAlignment()

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229208 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-14 01:44:41 +00:00
Benjamin Kramer
d913d9d2c3 MathExtras: Bring Count(Trailing|Leading)Ones and CountPopulation in line with countTrailingZeros
Update all callers.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228930 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-12 15:35:40 +00:00
Ahmed Bougacha
9e9bde9b54 [CodeGen] Don't blindly combine (fp_round (fp_round x)) to (fp_round x).
We used to do this DAG combine, but it's not always correct:
If the first fp_round isn't a value preserving truncation, it might
introduce a tie in the second fp_round, that wouldn't occur in the
single-step fp_round we want to fold to.
In other words, double rounding isn't the same as rounding.

Differential Revision: http://reviews.llvm.org/D7571


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228911 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-12 06:15:29 +00:00
Jonas Paulsson
fc58cf7676 Fix SelectionDAG compile time issue with alias analysis.
Add new token factor node and its users to worklist if alias analysis is
turned on, in DAGCombiner::visitTokenFactor(). Alias analysis may cause
a lot of new token factors to be inserted into the DAG, and they need to
be optimized to avoid significant slow-downs.

Reviewed by Hal Finkel.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228841 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-11 16:10:31 +00:00
Jonas Paulsson
b8ee890901 Two comment typo fixes in lib/CodeGen/SelectionDAG/DAGCombiner.cpp.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228700 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-10 15:34:29 +00:00
Chandler Carruth
1c7c2e8650 [x86] Fix PR22524: the DAG combiner was incorrectly handling illegal
nodes when folding bitcasts of constants.

We can't fold things and then check after-the-fact whether it was legal.
Once we have formed the DAG node, arbitrary other nodes may have been
collapsed to it. There is no easy way to go back. Instead, we need to
test for the specific folding cases we're interested in and ensure those
are legal first.

This could in theory make this less powerful for bitcasting from an
integer to some vector type, but AFAICT, that can't actually happen in
the SDAG so its fine. Now, we *only* whitelist specific int->fp and
fp->int bitcasts for post-legalization folding. I've added the test case
from the PR.

(Also as a note, this does not appear to be in 3.6, no backport needed)

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228656 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-10 02:25:56 +00:00
Ahmed Bougacha
ec35069525 [CodeGen] Add hook/combine to form vector extloads, enabled on X86.
The combine that forms extloads used to be disabled on vector types,
because "None of the supported targets knows how to perform load and
sign extend on vectors in one instruction."

That's not entirely true, since at least SSE4.1 X86 knows how to do
those sextloads/zextloads (with PMOVS/ZX).
But there are several aspects to getting this right.
First, vector extloads are controlled by a profitability callback.
For instance, on ARM, several instructions have folded extload forms,
so it's not always beneficial to create an extload node (and trying to
match extloads is a whole 'nother can of worms).

The interesting optimization enables folding of s/zextloads to illegal
(splittable) vector types, expanding them into smaller legal extloads.

It's not ideal (it introduces some legalization-like behavior in the
combine) but it's better than the obvious alternative: form illegal
extloads, and later try to split them up.  If you do that, you might
generate extloads that can't be split up, but have a valid ext+load
expansion.  At vector-op legalization time, it's too late to generate
this kind of code, so you end up forced to scalarize. It's better to
just avoid creating egregiously illegal nodes.

This optimization is enabled unconditionally on X86.

Note that the splitting combine is happy with "custom" extloads. As
is, this bypasses the actual custom lowering, and just unrolls the
extload. But from what I've seen, this is still much better than the
current custom lowering, which does some kind of unrolling at the end
anyway (see for instance load_sext_4i8_to_4i64 on SSE2, and the added
FIXME).

Also note that the existing combine that forms extloads is now also
enabled on legal vectors.  This doesn't have a big effect on X86
(because sext+load is usually combined to sext_inreg+aextload).
On ARM it fires on some rare occasions; that's for a separate commit.

Differential Revision: http://reviews.llvm.org/D6904


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228325 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-05 18:31:02 +00:00
Quentin Colombet
24508d33fb Revert r227242 - Merge vector stores into wider vector stores (PR21711).
This commit creates infinite loop in DAG combine for in the LLVM test-suite
for aarch64 with mcpu=cylcone (just having neon may be enough to expose this).


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227272 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-27 23:58:01 +00:00
Sanjay Patel
c94f9d3d2f Merge vector stores into wider vector stores (PR21711)
This patch resolves part of PR21711 ( http://llvm.org/bugs/show_bug.cgi?id=21711 ).

The 'f3' test case in that report presents a situation where we have two 128-bit
stores extracted from a 256-bit source vector. 

Instead of producing this:

vmovaps %xmm0, (%rdi)
vextractf128    $1, %ymm0, 16(%rdi)

This patch merges the 128-bit stores into a single 256-bit store:

vmovups %ymm0, (%rdi)

Differential Revision: http://reviews.llvm.org/D7208



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227242 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-27 20:50:27 +00:00
Sanjay Patel
05d5e213c4 merge consecutive stores of extracted vector elements (PR21711)
This is a 2nd try at the same optimization as http://reviews.llvm.org/D6698. 
That patch was checked in at r224611, but reverted at r225031 because it
caused a failure outside of the regression tests.

The cause of the crash was not recognizing consecutive stores that have mixed
source values (loads and vector element extracts), so this patch adds a check
to bail out if any store value is not coming from a vector element extract.

This patch also refactors the shared logic of the constant source and vector
extracted elements source cases into a helper function.

Differential Revision: http://reviews.llvm.org/D6850
 


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226845 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-22 18:21:26 +00:00
Michael Kuperstein
a52ddfa930 [DAGCombine] Produce better code for constant splats
This solves PR22276.
Splats of constants would sometimes produce redundant shuffles, sometimes ridiculously so (see the PR for details). Fold these shuffles into BUILD_VECTORs early on instead.

Differential Revision: http://reviews.llvm.org/D7093

Fixed recommit of r226811.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226816 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-22 13:07:28 +00:00
Michael Kuperstein
8fc1c3a619 Revert r226811, MSVC accepts code sane compilers don't.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226814 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-22 12:48:07 +00:00
Michael Kuperstein
0a979a09ae [DAGCombine] Produce better code for constant splats
This solves PR22276.
Splats of constants would sometimes produce redundant shuffles, sometimes ridiculously so (see the PR for details). Fold these shuffles into BUILD_VECTORs early on instead.

Differential Revision: http://reviews.llvm.org/D7093

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226811 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-22 12:37:23 +00:00
Elena Demikhovsky
2785766bc8 Fixed a bug in type legalizer for masked load/store intrinsics.
The problem occurs when after vectorization we have type
<2 x i32>. This type is promoted to <2 x i64> and then requires
additional efforts for expanding loads and truncating stores.
I added EXPAND / TRUNCATE attributes to the masked load/store
SDNodes. The code now contains additional shuffles.
I've prepared changes in the cost estimation for masked memory
operations, it will be submitted separately.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226808 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-22 12:07:59 +00:00
Elena Demikhovsky
9cb8df2c75 Fixed a comment
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226806 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-22 10:01:36 +00:00
Elena Demikhovsky
cdce03426d Fixed a bug in narrowing store operation.
Type MVT::i1 became legal in KNL, but store operation can't be narrowed to this type,
since the size of VT (1 bit) is not equal to its actual store size(8 bits).

Added a test provided by David (dag@cray.com)


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226805 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-22 09:39:08 +00:00
Tim Northover
f5f8a3e6a6 DAGCombine: fold (or (and X, M), (and X, N)) -> (and X, (or M, N))
It can help with argument juggling on some targets, and is generally a good
idea.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226740 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-21 23:17:19 +00:00
Tim Northover
c49e57ade1 Revert "DAGCombine: fold (or (and X, M), (and X, N)) -> (and X, (or M, N))"
It hadn't gone through review yet, but was still on my local copy.

This reverts commit r226663

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226665 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-21 15:48:52 +00:00
Tim Northover
47f47f5d2a DAGCombine: fold (or (and X, M), (and X, N)) -> (and X, (or M, N))
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226663 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-21 15:43:28 +00:00
Mehdi Amini
5eed637b34 Improve DAG combine pass on certain IR vector patterns
Loading 2 2x32-bit float vectors into the bottom half of a 256-bit vector
produced suboptimal code in AVX2 mode with certain IR combinations.

In particular, the IR optimizer folded 2f32 + 2f32 -> 4f32, 4f32 + 4f32
(undef) -> 8f32 into a 2f32 + 2f32 -> 8f32, which seems more canonical,
but then mysteriously generated rather bad code; the movq/movhpd combination
didn't match.

The problem lay in the BUILD_VECTOR optimization path. The 2f32 inputs
would get promoted to 4f32 by the type legalizer, eventually resulting
in a BUILD_VECTOR on two 4f32 into an 8f32. The BUILD_VECTOR then, recognizing
these were both half the output size, concatted them and then produced
a shuffle. However, the resulting concat + shuffle was more complex than
it should be; in the case where the upper half of the output is undef, we
probably want to generate shuffle + concat instead.

This enhancement causes the vector_shuffle combine step to recognize this
suboptimal pattern and correct it. I included it there instead of in BUILD_VECTOR
in case the same suboptimal pattern occurs for other reasons.

This results in the optimizer correctly producing the optimal movq + movhpd
sequence for all three variations on this IR, even with AVX2.

I've included a test case.

Radar link: rdar://problem/19287012
Fix for PR 21943.

From: Fiona Glaser <fglaser@apple.com>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226360 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-17 01:35:56 +00:00
Chandler Carruth
1b279144ec [cleanup] Re-sort all the #include lines in LLVM using
utils/sort_includes.py.

I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225974 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 11:23:27 +00:00
Mehdi Amini
cfe92407cd DAG Combiner: Fold SelectCC When Cond is UNDEF
In case folding a node end up with a NaN as operand for the select, 
the folding of the condition of the selectcc node returns "UNDEF".

Differential Revision: http://reviews.llvm.org/D6889



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225952 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 05:45:24 +00:00
Matthias Braun
12232769b3 DAGCombiner: simplify by using condition variables; NFC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225836 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-13 22:17:46 +00:00
Matt Arsenault
7c06364dc0 R600: Implement getRecipEstimate
This requires a new hook to prevent expanding sqrt in terms
of rsqrt and reciprocal. v_rcp_f32, v_rsq_f32, and v_sqrt_f32 are
all the same rate, so this expansion would just double the number
of instructions and cycles.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225828 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-13 20:53:23 +00:00
Olivier Sallenave
9dd21f4380 Added TLI hook for isFPExtFree. Some of the FMA combine heuristics are now guarded with that hook.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225795 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-13 15:06:36 +00:00
Matt Arsenault
29ad7506e1 Combine fcmp + select to fminnum / fmaxnum if no nans and legal
Also require unsafe FP math for no since there isn't a way to
test for signed zeros.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225744 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-13 00:43:00 +00:00
Hal Finkel
8e1d151abe [DAGCombine] Remainder of fix to r225380 (More FMA folding opportunities)
As pointed out by Aditya (and Owen), when we elide an FP extend to form an FMA,
we need to extend the incoming operands so that the resulting node will really
be legal. This is currently enabled only for PowerPC, and it happens to work
there regardless, but this should fix the functionality for everyone else
should anyone else wish to use it.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225492 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-09 01:29:29 +00:00
Hal Finkel
40ddb2ce8f Partial fix to r225380 (More FMA folding opportunities)
As pointed out by Aditya (and Owen), there are two things wrong with this code.
First, it adds patterns which elide FP extends when forming FMAs, and that might
not be profitable on all targets (it belongs behind the pre-existing
aggressive-FMA-formation flag). This is fixed by this change.

Second, the resulting nodes might have operands of different types (the
extensions need to be re-added). That will be fixed in the follow-up commit.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225485 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-09 00:45:54 +00:00
Ahmed Bougacha
7fac1d945f [SelectionDAG] Allow targets to specify legality of extloads' result
type (in addition to the memory type).

The *LoadExt* legalization handling used to only have one type, the
memory type.  This forced users to assume that as long as the extload
for the memory type was declared legal, and the result type was legal,
the whole extload was legal.

However, this isn't always the case.  For instance, on X86, with AVX,
this is legal:
    v4i32 load, zext from v4i8
but this isn't:
    v4i64 load, zext from v4i8
Whereas v4i64 is (arguably) legal, even without AVX2.

Note that the same thing was done a while ago for truncstores (r46140),
but I assume no one needed it yet for extloads, so here we go.

Calls to getLoadExtAction were changed to add the value type, found
manually in the surrounding code.

Calls to setLoadExtAction were mechanically changed, by wrapping the
call in a loop, to match previous behavior.  The loop iterates over
the MVT subrange corresponding to the memory type (FP vectors, etc...).
I also pulled neighboring setTruncStoreActions into some of the loops;
those shouldn't make a difference, as the additional types are illegal.
(e.g., i128->i1 truncstores on PPC.)

No functional change intended.

Differential Revision: http://reviews.llvm.org/D6532


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225421 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-08 00:51:32 +00:00
Olivier Sallenave
033a537a84 More FMA folding opportunities.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225380 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-07 20:54:17 +00:00
Olivier Sallenave
bc2572cac5 Test commit
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225368 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-07 19:45:17 +00:00
Craig Topper
9bf73516cb Replace several 'assert(false' with 'llvm_unreachable' or fold a condition into the assert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225160 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-05 10:15:49 +00:00
Alexey Samsonov
c0319dd9c2 Revert "merge consecutive stores of extracted vector elements"
This reverts commit r224611. This change causes crashes
in X86 DAG->DAG Instruction Selection.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225031 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-31 00:40:28 +00:00
Mehdi Amini
8548c2453f Always assert in DAGCombine and not only when -debug is enabled
Right now in DAG Combine check the validity of the returned type 
only when -debug is given on the command line. However usually 
the test cases in the validation does not use -debug. 
An Assert build should always check this.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224779 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-23 18:59:02 +00:00
Michael Kuperstein
1f0ddef593 [DagCombine] Improve DAGCombiner BUILD_VECTOR when it has two sources of elements
This partially fixes PR21943.

For AVX, we go from:

vmovq   (%rsi), %xmm0
vmovq   (%rdi), %xmm1
vpermilps       $-27, %xmm1, %xmm2 ## xmm2 = xmm1[1,1,2,3]
vinsertps       $16, %xmm2, %xmm1, %xmm1 ## xmm1 = xmm1[0],xmm2[0],xmm1[2,3]
vinsertps       $32, %xmm0, %xmm1, %xmm1 ## xmm1 = xmm1[0,1],xmm0[0],xmm1[3]
vpermilps       $-27, %xmm0, %xmm0 ## xmm0 = xmm0[1,1,2,3]
vinsertps       $48, %xmm0, %xmm1, %xmm0 ## xmm0 = xmm1[0,1,2],xmm0[0]

To the expected:

vmovq   (%rdi), %xmm0
vmovhpd (%rsi), %xmm0, %xmm0
retq

Fixing this for AVX2 is still open.

Differential Revision: http://reviews.llvm.org/D6749

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224759 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-23 08:59:45 +00:00
Sanjay Patel
3c3cd10928 merge consecutive stores of extracted vector elements
Add a path to DAGCombiner::MergeConsecutiveStores() 
to combine multiple scalar stores when the store operands
are extracted vector elements. This is a partial fix for
PR21711 ( http://llvm.org/bugs/show_bug.cgi?id=21711 ).

For the new test case, codegen improves from:

   vmovss  %xmm0, (%rdi)
   vextractps      $1, %xmm0, 4(%rdi)
   vextractps      $2, %xmm0, 8(%rdi)
   vextractps      $3, %xmm0, 12(%rdi)
   vextractf128    $1, %ymm0, %xmm0
   vmovss  %xmm0, 16(%rdi)
   vextractps      $1, %xmm0, 20(%rdi)
   vextractps      $2, %xmm0, 24(%rdi)
   vextractps      $3, %xmm0, 28(%rdi)
   vzeroupper
   retq

To:

   vmovups	%ymm0, (%rdi)
   vzeroupper
   retq

Patch reviewed by Nadav Rotem.

Differential Revision: http://reviews.llvm.org/D6698



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224611 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-19 20:23:41 +00:00
Michael Kuperstein
fd350586f5 [DAGCombine] Slightly improve lowering of BUILD_VECTOR into a shuffle.
This handles the case of a BUILD_VECTOR being constructed out of elements extracted from a vector twice the size of the result vector. Previously this was always scalarized. Now, we try to construct a shuffle node that feeds on extract_subvectors.

This fixes PR15872 and provides a partial fix for PR21711.

Differential Revision: http://reviews.llvm.org/D6678

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224429 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-17 12:32:17 +00:00
Matt Arsenault
6e6318f148 Add target hook for whether it is profitable to reduce load widths
Add an option to disable optimization to shrink truncated larger type
loads to smaller type loads. On SI this prevents using scalar load
instructions in some cases, since there are no scalar extloads.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224084 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-12 00:00:24 +00:00
Owen Anderson
59bf8e81f3 Fix a few instances found in SelectionDAG where we were not handling F16 at parity with F32 and F64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223760 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-09 06:50:39 +00:00
Simon Pilgrim
94590ca4cf [InstCombine] Minor optimization for bswap with binary ops
Added instcombine optimizations for BSWAP with AND/OR/XOR ops:

OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )

Since its just a one liner, I've also added BSWAP to the DAGCombiner equivalent as well:

fold (OP (bswap x), (bswap y)) -> (bswap (OP x, y))

Refactored bswap-fold tests to use FileCheck instead of just checking that the bswaps had gone.

Differential Revision: http://reviews.llvm.org/D6407



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223349 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-04 09:44:01 +00:00
Elena Demikhovsky
73ae1df82c Masked Load / Store Intrinsics - the CodeGen part.
I'm recommiting the codegen part of the patch.
The vectorizer part will be send to review again.

Masked Vector Load and Store Intrinsics.
Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)

Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.

http://reviews.llvm.org/D6191



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223348 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-04 09:40:44 +00:00
Duncan P. N. Exon Smith
54786a0936 Revert "Masked Vector Load and Store Intrinsics."
This reverts commit r222632 (and follow-up r222636), which caused a host
of LNT failures on an internal bot.  I'll respond to the commit on the
list with a reproduction of one of the failures.

Conflicts:
	lib/Target/X86/X86TargetTransformInfo.cpp

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222936 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-28 21:29:14 +00:00
Elena Demikhovsky
ae1ae2c3a1 Masked Vector Load and Store Intrinsics.
Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)

Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.

http://reviews.llvm.org/D6191



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222632 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-23 08:07:43 +00:00