so that it can be reused in MemCpyOptimizer. This analysis is needed to remove
an unnecessary memcpy when returning a struct into a local variable.
rdar://11341081
PR12686
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156776 91177308-0d34-0410-b5e6-96231b3b80d8
Returning a temporary BitVector is very expensive. If you must, create
the temporary explicitly: Use BitVector(A).flip() instead of ~A.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156768 91177308-0d34-0410-b5e6-96231b3b80d8
These operators were crazy slow, calling malloc to return a temporary
result. At the same time, they look very innocent when used in code.
If you need temporary BitVectors to compute your thing, create them
explicitly, and use the inplace logical operators. This makes the high
cost explicit in the code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156767 91177308-0d34-0410-b5e6-96231b3b80d8
Ordinary patch for PR1255.
Added new case-ranges orientated methods for adding/removing cases in SwitchInst. After this patch cases will internally representated as ConstantArray-s instead of ConstantInt, externally cases wrapped within the ConstantRangesSet object.
Old methods of SwitchInst are also works well, but marked as deprecated. So on this stage we have no side effects except that I added support for case ranges in BitcodeReader/Writer, of course test for Bitcode is also added. Old "switch" format is also supported.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156704 91177308-0d34-0410-b5e6-96231b3b80d8
This new function provides a way to get the iOS version number from ios triples.
Part of rdar://11409204
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156483 91177308-0d34-0410-b5e6-96231b3b80d8
This lets you save the textual representation of the LLVM IR to a file.
Before this patch it could only be printed to STDERR from llvm-c.
Patch by Carlo Kok!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156479 91177308-0d34-0410-b5e6-96231b3b80d8
Added new case-ranges orientated methods for adding/removing cases in SwitchInst. After this patch cases will internally representated as ConstantArray-s instead of ConstantInt, externally cases wrapped within the ConstantRangesSet object.
Old methods of SwitchInst are also works well, but marked as deprecated. So on this stage we have no side effects except that I added support for case ranges in BitcodeReader/Writer, of course test for Bitcode is also added. Old "switch" format is also supported.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156374 91177308-0d34-0410-b5e6-96231b3b80d8
The getPointerRegClass() hook can return register classes that depend on
the calling convention of the current function (ptr_rc_tailcall).
So far, we have been able to infer the calling convention from the
subtarget alone, but as we add support for multiple calling conventions
per target, that no longer works.
Patch by Yiannis Tsiouris!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156328 91177308-0d34-0410-b5e6-96231b3b80d8
This function is a generalization of getMatchingSuperRegClass() to the
symmetric case where both sides are using a sub-register index. It will
find a super-register class and sub-register indexes that make this
diagram commute:
PreA
SuperRC ----------> RCA
| |
| |
PreB | | SubA
| |
| |
V V
RCB ----------> SubRC
SubB
This can be used to coalesce copies like:
%vreg1:sub16 = COPY %vreg2:sub16; GR64:%vreg1, GR32: %vreg2
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156317 91177308-0d34-0410-b5e6-96231b3b80d8
This will be used to determine whether it's profitable to turn a select into a
branch when the branch is likely to be predicted.
Currently enabled for everything but Atom on X86 and Cortex-A9 devices on ARM.
I'm not entirely happy with the name of this flag, suggestions welcome ;)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156233 91177308-0d34-0410-b5e6-96231b3b80d8
add a new Region::block_iterator which actually iterates over the basic
blocks of the region.
The old iterator, now call 'block_node_iterator' iterates over
RegionNodes which contain a single basic block. This works well with the
GraphTraits-based iterator design, however most users actually want an
iterator over the BasicBlocks inside these RegionNodes. Now the
'block_iterator' is a wrapper which exposes exactly this interface.
Internally it uses the block_node_iterator to walk all nodes which are
single basic blocks, but transparently unwraps the basic block to make
user code simpler.
While this patch is a bit of a wash, most of the updates are to internal
users, not external users of the RegionInfo. I have an accompanying
patch to Polly that is a strict simplification of every user of this
interface, and I'm working on a pass that also wants the same simplified
interface.
This patch alone should have no functional impact.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156202 91177308-0d34-0410-b5e6-96231b3b80d8
The new target machines are:
nvptx (old ptx32) => 32-bit PTX
nvptx64 (old ptx64) => 64-bit PTX
The sources are based on the internal NVIDIA NVPTX back-end, and
contain more functionality than the current PTX back-end currently
provides.
NV_CONTRIB
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156196 91177308-0d34-0410-b5e6-96231b3b80d8
of the CodeExtractor utility. This allows speculatively computing input
and output sets to measure the likely size impact of the code
extraction.
These sets cannot be reused sadly -- we mutate the function prior to
forming the final sets used by the actual extraction.
The interface has been revamped slightly to make it easier to use
correctly by making the interface const and sinking the computation of
the number of exit blocks into the full extraction function and away
from the rest of this logic which just computed two output parameters.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156168 91177308-0d34-0410-b5e6-96231b3b80d8
and expose it as a utility class rather than as free function wrappers.
The simple free-function interface works well for the bugpoint-specific
pass's uses of code extraction, but in an upcoming patch for more
advanced code extraction, they simply don't expose a rich enough
interface. I need to expose various stages of the process of doing the
code extraction and query information to decide whether or not to
actually complete the extraction or give up.
Rather than build up a new predicate model and pass that into these
functions, just take the class that was actually implementing the
functions and lift it up into a proper interface that can be used to
perform code extraction. The interface is cleaned up and re-documented
to work better in a header. It also is now setup to accept the blocks to
be extracted in the constructor rather than in a method.
In passing this essentially reverts my previous commit here exposing
a block-level query for eligibility of extraction. That is no longer
necessary with the more rich interface as clients can query the
extraction object for eligibility directly. This will reduce the number
of walks of the input basic block sequence by quite a bit which is
useful if this enters the normal optimization pipeline.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156163 91177308-0d34-0410-b5e6-96231b3b80d8