Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215558 91177308-0d34-0410-b5e6-96231b3b80d8
This patch improves the existing algorithm in DAGCombiner that
attempts to fold shuffles according to rule:
shuffle(shuffle(x, y, M1), undef, M2) -> shuffle(y, undef, M3)
Before this change, there were cases where the DAGCombiner conservatively
avoided folding shuffles even if the resulting mask would have been legal.
That is because the algorithm wrongly assumed that commuting
an illegal shuffle mask would always produce an illegal mask.
With this change, we now correctly compute the commuted shuffle mask before
calling method 'isShuffleMaskLegal' on it.
On X86, this improves for example the codegen for the following function:
define <4 x i32> @test(<4 x i32> %A, <4 x i32> %B) {
%1 = shufflevector <4 x i32> %B, <4 x i32> %A, <4 x i32> <i32 1, i32 2, i32 6, i32 7>
%2 = shufflevector <4 x i32> %1, <4 x i32> undef, <4 x i32> <i32 2, i32 3, i32 2, i32 3>
ret <4 x i32> %2
}
Before this change the X86 backend (-mcpu=corei7) generated
the following assembly code for function @test:
shufps $-23, %xmm0, %xmm1 # xmm1 = xmm1[1,2],xmm0[2,3]
movhlps %xmm1, %xmm1 # xmm1 = xmm1[1,1]
movaps %xmm1, %xmm0
Now we produce:
movhlps %xmm0, %xmm0 # xmm0 = xmm0[1,1]
Added extra test cases in combine-vec-shuffle-2.ll to verify that we correctly
fold according to the above-mentioned rule.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215555 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Moved some calls to setCanHaveModuleDir to the MipsTargetStreamer base class and removed the resulting empty functions from the MipsTargetELFStreamer class.
Also fixed a missing call to setCanHaveModuleDir in MipsTargetELFStreamer::emitDirectiveSetMicroMips.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: tomatabacu
Differential Revision: http://reviews.llvm.org/D4781
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215542 91177308-0d34-0410-b5e6-96231b3b80d8
Especially with blends and large tree heights there was a problem with
the fuzzer where it would end up with enough undef shuffle elements in
enough parts of the tree that in a birthday-attack kind of way we ended
up regularly having large numbers of undef elements in the result. I was
seeing reasonably frequent cases of *all* results being undef which
prevents us from doing any correctness checking at all. While having
undef lanes is important, this was too much.
So I've tried to apply some math to the probabilities of having an undef
lane and balance them against the tree height. Please be gentle, I'm
really terrible at math. I probably made a bunch of amateur mistakes
here. Fixes, etc. are quite welcome. =D At least in running it some, it
seems to be producing more interesting (for correctness testing)
results.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215540 91177308-0d34-0410-b5e6-96231b3b80d8
attribute and function argument attribute synthesizing and propagating.
As with the other uses of this attribute, the goal remains a best-effort
(no guarantees) attempt to not optimize the function or assume things
about the function when optimizing. This is particularly useful for
compiler testing, bisecting miscompiles, triaging things, etc. I was
hitting specific issues using optnone to isolate test code from a test
driver for my fuzz testing, and this is one step of fixing that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215538 91177308-0d34-0410-b5e6-96231b3b80d8
Added avx512_movnt_vl multiclass for handling 256/128-bit forms of instruction.
Added encoding and lowering tests.
Reviewed by Elena Demikhovsky <elena.demikhovsky@intel.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215536 91177308-0d34-0410-b5e6-96231b3b80d8
Patch by Matheus Almeida and Toma Tabacu
The lld test failure on the previous attempt to commit was caused by the
addition of the .pdr section causing the offsets it was checking to change.
This has been fixed by removing the .ent/.end directives from that test since
they weren't really needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215535 91177308-0d34-0410-b5e6-96231b3b80d8
a tree of inputs to blend iteratively together.
This required a pretty substantial rewrite of the innards. The number of
shuffle instructions is now bounded in terms of tree-height. There is
a flag to disable blends so that its still possible to test single input
shuffles. I've also improved various aspects of how the test program is
generated, primarily to simplify the test harness and allow some
optimizations to clean up how we actually check the results and build up
the inputs.
Again, apologies for my likely horrible use of Python... But hey, it
works! (Ish?)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215530 91177308-0d34-0410-b5e6-96231b3b80d8
As of r214452, isa<MemSDNode> will return true for nodes for which
isa<MemIntrinsicSDNode> will return true (classof now respects the actual class
hierarchy). So we no longer need to check for both MemIntrinsicSDNode and
MemSDNode separately.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215523 91177308-0d34-0410-b5e6-96231b3b80d8
one pesky test case correctly.
This test case caused the old code to infloop occilating between solving
the low-half and the high-half. The 'side balancing' part of
single-input v8 shuffle lowering didn't handle the one pattern which can
cause it to occilate. Fortunately the fuzz testing found this case.
Unfortuately it was *terrible* to handle. I'm really sorry for the
amount and density of the code here, I'd love suggestions on how to
simplify it. I feel like there *must* be a simpler form here, but after
a lot of days I've not found it. This is the only one I've found that
even works. I've added the one pesky test case along with some nice
comments explaining the core problem that we have to solve here.
So far this has survived approximately 32k test cases. More strenuous
fuzzing commencing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215519 91177308-0d34-0410-b5e6-96231b3b80d8
This implements PPCTargetLowering::getTgtMemIntrinsic for Altivec load/store
intrinsics. As with the construction of the MachineMemOperands for the
intrinsic calls used for unaligned load/store lowering, the only slight
complication is that we need to represent a larger memory range than the
loaded/stored value-type size (because the address is rounded down to an
aligned address, and we need to conservatively represent the entire possible
range of the actual access). This required adding an extra size field to
TargetLowering::IntrinsicInfo, and this was done in a way that required no
modifications to other targets (the size defaults to the store size of the
provided memory data type).
This fixes test/CodeGen/PowerPC/unal-altivec-wint.ll (so it can be un-XFAILed).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215512 91177308-0d34-0410-b5e6-96231b3b80d8
Unfortunately, our use of the SDNode class hierarchy for INTRINSIC_W_CHAIN and
INTRINSIC_VOID nodes is somewhat broken right now. These nodes sometimes are
used for memory intrinsics (those with MachineMemOperands), and sometimes not.
When not, the nodes are not created as instances of MemIntrinsicSDNode, but
rather created as some other subclass of SDNode using DAG::getNode. When they
are memory intrinsics, they are created using DAG::getMemIntrinsicNode as
instances of MemIntrinsicSDNode. MemIntrinsicSDNode is a subclass of
MemSDNode, but prior to r214452, we had a non-self-consistent setup whereby
MemIntrinsicSDNode::classof on INTRINSIC_W_CHAIN and INTRINSIC_VOID would
return true but MemSDNode::classof on INTRINSIC_W_CHAIN and INTRINSIC_VOID
would return false. In r214452, MemSDNode::classof was changed to return true
for INTRINSIC_W_CHAIN and INTRINSIC_VOID, which is now self-consistent. The
problem is that neither the pre-r214452 logic and the post-r214452 logic are
really right. The truth is that not all INTRINSIC_W_CHAIN and INTRINSIC_VOID
nodes are instances of MemIntrinsicSDNode (or MemSDNode for that matter), and
the return value from classof needs to reflect that. This was broken before
r214452 (because MemIntrinsicSDNode::classof always returned true), and was
broken afterward (because MemSDNode::classof also always returned true), and
will now be correct.
The minimal solution is to grab one of the SubclassData bits (there is one left
for MemIntrinsicSDNode nodes) and use it to store whether or not a particular
INTRINSIC_W_CHAIN or INTRINSIC_VOID is really an instance of
MemIntrinsicSDNode or not. Doing this allows both MemIntrinsicSDNode::classof
and MemSDNode::classof to return the correct answer for the underlying object
for both the memory-intrinsic and non-memory-intrinsic cases.
This fixes the problem that r214452 created in the SelectionDAGDumper (thanks
to Matt Arsenault for pointing it out).
Because PowerPC does not implement getTgtMemIntrinsic, this change breaks
test/CodeGen/PowerPC/unal-altivec-wint.ll. I've XFAILed it for now, and will
fix it in a follow-up commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215511 91177308-0d34-0410-b5e6-96231b3b80d8
It's not clear what the semantics of a self-move should be. The
consensus appears to be that a self-move should leave the object in a
moved-from state, which is what our existing move assignment operator
does.
However, the MSVC 2013 STL will perform self-moves in some cases. In
particular, when doing a std::stable_sort of an already sorted APSInt
vector of an appropriate size, one of the merge steps will self-move
half of the elements.
We don't notice this when building with MSVC, because MSVC will not
synthesize the move assignment operator for APSInt. Presumably MSVC
does this because APInt, the base class, has user-declared special
members that implicitly delete move special members. Instead, MSVC
selects the copy-assign operator, which defends against self-assignment.
Clang, on the other hand, selects the move-assign operator, and we get
garbage APInts.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215478 91177308-0d34-0410-b5e6-96231b3b80d8
I think that this will scale better in most cases than adding a Pat<> for each
mapping from the intrinsic DAG to the intruction (i.e. rri, rrik, rrikz). We
can just lower to the SDNode and have the resulting DAG be matches by the DAG
patterns.
Alternatively (long term), we could keep the Pat<>s but generate them via the
new AVX512_masking multiclass. The difficulty is that in order to formulate
that we would have to concatenate DAGs. Currently this is only supported if
the operators of the input DAGs are identical.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215473 91177308-0d34-0410-b5e6-96231b3b80d8
v2: drop enum keyword
use correct extension mode
don't bother computing the sign in unsinged case
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215462 91177308-0d34-0410-b5e6-96231b3b80d8
v2: add tests
rename LowerSDIV24 to LowerSDIVREM24
handle the rem part in this function
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215460 91177308-0d34-0410-b5e6-96231b3b80d8
An optional third field was added to `llvm.global_ctors` (and
`llvm.global_dtors`) in r209015. Most of the code has been changed to
deal with both versions of the variables. Users of the C API might
create either version, the helper functions in LLVM create the two-field
version, and clang now creates the three-field version.
However, the BitcodeReader was changed to always upgrade to the
three-field version. This created an unnecessary inconsistency in the
IR before/after serializing to bitcode.
This commit resolves the inconsistency by making the third field truly
optional (and not upgrading in the bitcode reader). Since `llvm-link`
was relying on this upgrade code, rather than deleting it I've moved it
into `ModuleLinker`, where it upgrades these arrays as necessary to
resolve inconsistencies between modules.
The ideal resolution would be to remove the 2-field version and make the
third field required. I filed PR20506 to track that.
I changed `test/Bitcode/upgrade-global-ctors.ll` to a negative test and
duplicated the `llvm-link` check in `test/Linker/global_ctors.ll` to
check both upgrade directions.
Since I came across this as part of PR5680 (serializing use-list order),
I've also added the missing `verify-uselistorder` RUN line to
`test/Bitcode/metadata-2.ll`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215457 91177308-0d34-0410-b5e6-96231b3b80d8
I initially thought I could implement COMDATs with aliases by just
internalizing GVs instead of dropping them. This is a counter
example: Internalizing one of the @a would make @b and @c point
to different variables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215447 91177308-0d34-0410-b5e6-96231b3b80d8
was created for rather than the TargetMachine since we only
needed the TM for the subtarget and we can get that from the
MF.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215432 91177308-0d34-0410-b5e6-96231b3b80d8
The combiner ignored DBG nodes when checking
the uses of a virtual register.
It combined a sequence like
%vreg1 = madd %vreg2, %vreg3,...
DBG_VALUE (%vreg1 ...)
%vreg4 = add %vreg1,...
to
%vreg4 = madd %vreg2, %vreg3
leaving behind a dangling DBG_VALUE with
a definition. This triggered an assertion
in the MachineTraceMetrics.cpp module.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215431 91177308-0d34-0410-b5e6-96231b3b80d8
Type::dump() doesn't print a newline, which makes for a poor
experience in a debugger. This looks like it was an ommission
considering Value::dump() two lines above, so I've changed Type to add
a newline as well.
Of the two in-tree callers, one added a newline anyway, and I've
updated the other one to use Type::print instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215421 91177308-0d34-0410-b5e6-96231b3b80d8
refactoring in 215384. This way it can unique multiple entries describing
the same piece even if they don't have the exact same location.
(The same piece may get merged in and be added from OpenRanges).
There ought to be a more elegant solution for this, though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215418 91177308-0d34-0410-b5e6-96231b3b80d8
First, avoid calling setTailCall(false) on musttail calls. The funciton
prototypes should be "congruent", so the shadow layout should be exactly
the same.
Second, avoid inserting instrumentation after a musttail call to
propagate the return value shadow. We don't need to propagate the
result of a tail call, it should already be in the right place.
Reviewed By: eugenis
Differential Revision: http://reviews.llvm.org/D4331
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215415 91177308-0d34-0410-b5e6-96231b3b80d8
I believe this was addressed by r215157 and r215227, so let's have
another go at the bots, etc.
This reverts commit r214880.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215412 91177308-0d34-0410-b5e6-96231b3b80d8
as long as possible.
** Context **
Each time the dominance information is modified, the dominator tree analysis
switches in a slow query mode. After a few queries without any modification on
the dominator tree, it performs an expensive update of its internal structure to
provide fast queries again.
** Problem **
Prior to this patch, the MachineSink pass was splitting the critical edges on
demand while relying heavy on the dominator tree information. In some cases,
this leads to pathological behavior where:
- We end up in the slow query mode right after splitting an edge.
- We update the dominance information.
- We break the dominance information again, thus ending up in the slow query
mode and so on.
** Proposed Solution **
To mitigate this effect, this patch postpones all the splitting of the edges at
the end of each iteration of the main loop.
The benefits are:
- The dominance information is valid for the life time of an iteration.
- This simplifies the code as we do not have to special treat instructions that
are sunk on critical edges. Indeed, the related block will be available
through the next iteration.
The downside is that when edges splitting is required, this incurs an additional
iteration of the main loop compared to the previous scheme.
** Performance **
Thanks to this patch, the motivating example compiles in 6+ minutes instead of
10+ minutes. No test case added as the motivating example as nothing special but
being huge!
I have measured only noise for both the compile time and the runtime on the llvm
test-suite + SPECs with Os and O3.
Note: The current implementation of MachineBasicBlock::SplitCriticalEdge also
uses the dominance information and therefore, hits this problem. A subsequent
patch will address that.
<rdar://problem/17894619>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215410 91177308-0d34-0410-b5e6-96231b3b80d8