use ARG_FLAGSSDNode as the most aligned node type,
as it contains an int64_t, which is 8-byte
aligned on mingw.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56358 91177308-0d34-0410-b5e6-96231b3b80d8
Unfortunately this means removing one regression test
of GlobalsModRef because I couldn't work out how to
perform it without MarkModRef.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56342 91177308-0d34-0410-b5e6-96231b3b80d8
can get the readnone/readonly attributes, and gives them it.
The plan is to remove markmodref (which did the same thing
by querying GlobalsModRef) and delete the analogous
functionality from GlobalsModRef.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56341 91177308-0d34-0410-b5e6-96231b3b80d8
description says it does), not just when -analyze is
used as well. This means printing to stderr, so adjust
some tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56337 91177308-0d34-0410-b5e6-96231b3b80d8
catches a fair number of common cases. Note that this currently
causes Fast-ISel to leave behind lots of dead instructions.
Those will be dealt with in subsequent commits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56320 91177308-0d34-0410-b5e6-96231b3b80d8
copy of the BURRList scheduler, but with several parts ripped
out, such as backtracking, online topological sort maintenance
(needed by backtracking), the priority queue, and Sethi-Ullman
number computation and maintenance (needed by the priority
queue). As a result of all this, it generates somewhat lower
quality code, but that's its tradeoff for running about 30%
faster than list-burr in -fast mode in many cases.
This is somewhat experimental. Moving forward, major pieces of
this can be refactored with pieces in common with
ScheduleDAGRRList.cpp.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56307 91177308-0d34-0410-b5e6-96231b3b80d8
over having it in a register. And wait until after checking type
legality before requesting that the callee address be placed in a
register. Also, fix support for calls with void return type.
This speeds up fast-isel isel time by about 15% and reduces
instruction counts by about 3% overall on certain testcases. It also
changes many indirect calls to direct calls.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56292 91177308-0d34-0410-b5e6-96231b3b80d8
with an earlyclobber operand elsewhere. Propagate
this bit and the earlyclobber bit through SDISel.
Change linear-scan RA not to allocate regs in a way
that conflicts with an earlyclobber. See also comments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56290 91177308-0d34-0410-b5e6-96231b3b80d8
up some new ascii art to illustrate what it does. This change
currently has no effect on generated code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56270 91177308-0d34-0410-b5e6-96231b3b80d8
ConstantPoolSDNode, using the target's preferred alignment for the
constant type.
In LegalizeDAG, when performing loads from the constant pool, the
ConstantPoolSDNode's alignment is used in the calls to getLoad and
getExtLoad.
This change prevents SelectionDAG::getLoad/getExtLoad from incorrectly
choosing the ABI alignment for constant pool loads when Alignment == 0.
The incorrect alignment is only a performance issue when ABI alignment
does not equal preferred alignment (i.e., on x86 it was generating
MOVUPS instead of MOVAPS for v4f32 constant loads when the default ABI
alignment for 128bit vectors is forced to 1 byte.)
Patch by Paul Redmond!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56253 91177308-0d34-0410-b5e6-96231b3b80d8
- Add linkage to SymbolSDNode (default to external).
- Change ISD::ExternalSymbol to ISD::Symbol.
- Change ISD::TargetExternalSymbol to ISD::TargetSymbol
These changes pave the way to allowing SymbolSDNodes with non-external linkage.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56249 91177308-0d34-0410-b5e6-96231b3b80d8
- Recognize expressions like "x > -1 ? x : 0" as min/max and turn them
into expressions like "x < 0 ? 0 : x", which is easily recognizable
as a min/max operation.
- Refrain from folding expression like "y/2 < 1" to "y < 2" when the
comparison is being used as part of a min or max idiom, like
"y/2 < 1 ? 1 : y/2". In that case, the division has another use, so
folding doesn't eliminate it, and obfuscates the min/max, making it
harder to recognize as a min/max operation.
These benefit ScalarEvolution, CodeGen, and anything else that wants to
recognize integer min and max.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56246 91177308-0d34-0410-b5e6-96231b3b80d8