For biendian targets like ARM and AArch64, it is useful to have the
output of the llvm-dwarfdump and llvm-objdump report the endianness
used when the object files were generated.
Patch by Charlie Turner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218391 91177308-0d34-0410-b5e6-96231b3b80d8
This change fixes the ARM and AArch64 relocation visitors in
RelocVisitor. They were unconditionally assuming the object data are
little-endian. Tests have been added to ensure that the
llvm-dwarfdump utility does not crash when processing big-endian
object files.
Patch by Charlie Turner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218389 91177308-0d34-0410-b5e6-96231b3b80d8
This change replaces the brittle if/else chain of string comparisons
with a switch statement on the detected target triple, removing the
need for testing arbitrary architecture names returned from
getFileFormatName, whose primary purpose seems to be for display
(user-interface) purposes. The visitor now takes a reference to the
object file, rather than its arbitrary file format name to figure out
whether the file is a 32 or 64-bit object file and what the detected
target triple is.
A set of tests have been added to help show that the refactoring processes
relocations for the same targets as the original code.
Patch by Charlie Turner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218388 91177308-0d34-0410-b5e6-96231b3b80d8
This format is simply a regular object file with the bitcode stored in a
section named ".llvmbc", plus any number of other (non-allocated) sections.
One immediate use case for this is to accommodate compilation processes
which expect the object file to contain metadata in non-allocated sections,
such as the ".go_export" section used by some Go compilers [1], although I
imagine that in the future we could consider compiling parts of the module
(such as large non-inlinable functions) directly into the object file to
improve LTO efficiency.
[1] http://golang.org/doc/install/gccgo#Imports
Differential Revision: http://reviews.llvm.org/D4371
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218078 91177308-0d34-0410-b5e6-96231b3b80d8
This finishes the ability of llvm-objdump to print out all information from
the LC_DYLD_INFO load command.
The -bind option prints out symbolic references that dyld must resolve
immediately.
The -lazy-bind option prints out symbolc reference that are lazily resolved on
first use.
The -weak-bind option prints out information about symbols which dyld must
try to coalesce across images.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217853 91177308-0d34-0410-b5e6-96231b3b80d8
Teach WinCOFFObjectWriter how to write -mbig-obj style object files;
these object files allow for more sections inside an object file.
Our support for BigObj is notably different from binutils and cl: we
implicitly upgrade object files to BigObj instead of asking the user to
compile the same file *again* but with another flag. This matches up
with how LLVM treats ELF variants.
This was tested by forcing LLVM to always emit BigObj files and running
the entire test suite. A specific test has also been added.
I've lowered the maximum number of sections in a normal COFF file,
VS "14" CTP 3 supports no more than 65279 sections. This is important
otherwise we might not switch to BigObj quickly enough, leaving us with
a COFF file that we couldn't link.
yaml2obj support is all that remains to implement.
Differential Revision: http://reviews.llvm.org/D5349
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217812 91177308-0d34-0410-b5e6-96231b3b80d8
Similar to my previous -exports-trie option, the -rebase option dumps info from
the LC_DYLD_INFO load command. The rebasing info is a list of the the locations
that dyld needs to adjust if a mach-o image is not loaded at its preferred
address. Since ASLR is now the default, images almost never load at their
preferred address, and thus need to be rebased by dyld.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217709 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for reading the "bigobj" variant of COFF produced by
cl's /bigobj and mingw's -mbig-obj.
The most significant difference that bigobj brings is more than 2**16
sections to COFF.
bigobj brings a few interesting differences with it:
- It doesn't have a Characteristics field in the file header.
- It doesn't have a SizeOfOptionalHeader field in the file header (it's
only used in executable files).
- Auxiliary symbol records have the same width as a symbol table entry.
Since symbol table entries are bigger, so are auxiliary symbol
records.
Write support will come soon.
Differential Revision: http://reviews.llvm.org/D5259
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217496 91177308-0d34-0410-b5e6-96231b3b80d8
This adds the printing of more load commands, so that the normal load commands
in a typical X86 Mach-O executable can all be printed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217172 91177308-0d34-0410-b5e6-96231b3b80d8
I took a guess at the changes to the gold plugin, because that doesn't
seem to build by default for me. Not sure what dependencies I might be
missing for that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217056 91177308-0d34-0410-b5e6-96231b3b80d8
MachOObjectFile in lib/Object currently has no support for parsing the rebase,
binding, and export information from the LC_DYLD_INFO load command in final
linked mach-o images. This patch adds support for parsing the exports trie data
structure. It also adds an option to llvm-objdump to dump that export info.
I did the exports parsing first because it is the hardest. The information is
encoded in a trie structure, but the standard ObjectFile way to inspect content
is through iterators. So I needed to make an iterator that would do a
non-recursive walk through the trie and maintain the concatenation of edges
needed for the current string prefix.
I plan to add similar support in MachOObjectFile and llvm-objdump to
parse/display the rebasing and binding info too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216808 91177308-0d34-0410-b5e6-96231b3b80d8
Owning the buffer is somewhat inflexible. Some Binaries have sub Binaries
(like Archive) and we had to create dummy buffers just to handle that. It is
also a bad fit for IRObjectFile where the Module wants to own the buffer too.
Keeping this ownership would make supporting IR inside native objects
particularly painful.
This patch focuses in lib/Object. If something elsewhere used to own an Binary,
now it also owns a MemoryBuffer.
This patch introduces a few new types.
* MemoryBufferRef. This is just a pair of StringRefs for the data and name.
This is to MemoryBuffer as StringRef is to std::string.
* OwningBinary. A combination of Binary and a MemoryBuffer. This is needed
for convenience functions that take a filename and return both the
buffer and the Binary using that buffer.
The C api now uses OwningBinary to avoid any change in semantics. I will start
a new thread to see if we want to change it and how.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216002 91177308-0d34-0410-b5e6-96231b3b80d8
file with -macho, the Mach-O specific object file parser option.
After some discussion I chose to do this implementation contained in the logic
of llvm-objdump’s MachODump.cpp using a second disassembler for thumb when
needed and with updates mostly contained in the MachOObjectFile class.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215931 91177308-0d34-0410-b5e6-96231b3b80d8
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215558 91177308-0d34-0410-b5e6-96231b3b80d8
createBinary documented that it destroyed the parameter in error cases,
though by observation it does not. By passing the unique_ptr by value
rather than lvalue reference, callers are now explicit about passing
ownership and the function implements the documented contract. Remove
the explicit documentation, since now the behavior cannot be anything
other than what was documented, so it's redundant.
Also drops a unique_ptr::release in llvm-nm that was always run on a
null unique_ptr anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213557 91177308-0d34-0410-b5e6-96231b3b80d8
This patch enables the new ELFv2 ABI in the runtime dynamic loader.
The loader has to implement the following features:
- In the ELFv2 ABI, do not look up a function descriptor in .opd, but
instead use the local entry point when resolving a direct call.
- Update the TOC restore code to use the new TOC slot linkage area
offset.
- Create PLT stubs appropriate for the ELFv2 ABI.
Note that this patch also adds common-code changes. These are necessary
because the loader must check the newly added ELF flags: the e_flags
header bits encoding the ABI version, and the st_other symbol table
entry bits encoding the local entry point offset. There is currently
no way to access these, so I've added ObjectFile::getPlatformFlags and
SymbolRef::getOther accessors.
Reviewed by Hal Finkel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213491 91177308-0d34-0410-b5e6-96231b3b80d8
The registration scheme used in r211652 violated the read-only contract of
MemoryBuffer. This caused crashes in llvm-rtdyld where macho objects were backed
by read-only mmap'd memory.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213086 91177308-0d34-0410-b5e6-96231b3b80d8
IRObjectFile provides all the logic for producing mangled names and getting
symbols from inline assembly.
LTOModule then adds logic for linking specific tasks, like constructing
llvm.compiler_user or extracting linker options from the bitcode.
The rule of the thumb is that IRObjectFile has the functionality that is
needed by both LTO and llvm-ar.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212349 91177308-0d34-0410-b5e6-96231b3b80d8
Now that we have a lib/MC/MCAnalysis, the dependency was there just because
of two helper classes. Move the two over to MC.
This will allow IRObjectFile to parse inline assembly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212248 91177308-0d34-0410-b5e6-96231b3b80d8
universal file. This also includes support for -arch all, selecting the host
architecture by default from a universal file and checking if -arch is used
with a standard Mach-O it matches that architecture.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212054 91177308-0d34-0410-b5e6-96231b3b80d8
This makes the buffer ownership on error conditions very natural. The buffer
is only moved out of the argument if an object is constructed that now
owns the buffer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211546 91177308-0d34-0410-b5e6-96231b3b80d8
This allows us to just use a std::unique_ptr to store the pointer to the buffer.
The flip side is that they have to support releasing the buffer back to the
caller.
Overall this looks like a more efficient and less brittle api.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211542 91177308-0d34-0410-b5e6-96231b3b80d8
fat files) to print “ (for architecture XYZ)” for fat files with more than
one architecture to be like what the darwin tools do for fat files.
Also clean up the Mach-O printing of archive membernames in llvm-nm to use
the darwin form of "libx.a(foo.o)".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211316 91177308-0d34-0410-b5e6-96231b3b80d8