into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
Again, tools are trickier to pick the main module header for than
library source files. I've started to follow the pattern of using
LLVMContext.h when it is included as a stub for program source files.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169252 91177308-0d34-0410-b5e6-96231b3b80d8
The functionality of SectionMemoryManager is equivalent to the LLIMCJITMemoryManager being replaced except that it allocates memory as RW and later changes it to RX or R as needed. The page permissions are set in the call to MCJIT::finalizeObject.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168722 91177308-0d34-0410-b5e6-96231b3b80d8
Prior to this patch RuntimeDyld attempted to re-apply relocations every time reassignSectionAddress was called (via MCJIT::mapSectionAddress). In addition to being inefficient and redundant, this led to a problem when a section was temporarily moved too far away from another section with a relative relocation referencing the section being moved. To fix this, I'm adding a new method (finalizeObject) which the client can call to indicate that it is finished rearranging section addresses so the relocations can safely be applied.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167400 91177308-0d34-0410-b5e6-96231b3b80d8
MCJIT supports inline assembly, but requires the asm parser to do so.
Make sure to link it in and initialize it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167392 91177308-0d34-0410-b5e6-96231b3b80d8
Simulate a remote target address space by allocating a seperate chunk of
memory for the target and re-mapping section addresses to that prior to
execution. Later we'll want to have a truly remote process, but for now
this gets us closer to being able to test the remote target
functionality outside LLDB.
rdar://12157052
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163216 91177308-0d34-0410-b5e6-96231b3b80d8
Invalidate the instruction cache right before we start actually executing code, otherwise
we can miss some that came later. This is still not quite right for a truly lazilly
compiled environment, but it's closer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162803 91177308-0d34-0410-b5e6-96231b3b80d8
It's more flexible for MCJIT tasks, in addition it's provides a invalidation instruction cache for code sections which will be used before JIT code will be executed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156933 91177308-0d34-0410-b5e6-96231b3b80d8
Also refactor the existing OProfile profiling code to reuse the same interfaces with the VTune profiling code.
In addition, unit tests for the profiling interfaces were added.
This patch was prepared by Andrew Kaylor and Daniel Malea, and reviewed in the llvm-commits list by Jim Grosbach
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152620 91177308-0d34-0410-b5e6-96231b3b80d8
Previously let the JITEmitter do it. That's rather odd, and doesn't play nice
with the MCJIT, so move the (trivial) logic up.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147967 91177308-0d34-0410-b5e6-96231b3b80d8
the X86 asmparser to produce ranges in the one case that was annoying me, for example:
test.s:10:15: error: invalid operand for instruction
movl 0(%rax), 0(%edx)
^~~~~~~
It should be straight-forward to enhance filecheck, tblgen, and/or the .ll parser to use
ranges where appropriate if someone is interested.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142106 91177308-0d34-0410-b5e6-96231b3b80d8
- Introduce JITDefault code model. This tells targets to set different default
code model for JIT. This eliminates the ugly hack in TargetMachine where
code model is changed after construction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135580 91177308-0d34-0410-b5e6-96231b3b80d8
(including compilation, assembly). Move relocation model Reloc::Model from
TargetMachine to MCCodeGenInfo so it's accessible even without TargetMachine.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135468 91177308-0d34-0410-b5e6-96231b3b80d8
Now we can remove RuntimeDyld from the LLVM_LINK_COMPONENTS of
tools/lli. CMakeLists.txt LLVM_LINK_COMPONENTS shall not differ from
its companion Makefile LINK_COMPONENTS.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128069 91177308-0d34-0410-b5e6-96231b3b80d8
Also perform the required dark rituals and sacrifices to placate the buildbot
spirits. We shall see if they are appeased...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128067 91177308-0d34-0410-b5e6-96231b3b80d8
Proof-of-concept code that code-gens a module to an in-memory MachO object.
This will be hooked up to a run-time dynamic linker library (see: llvm-rtdyld
for similarly conceptual work for that part) which will take the compiled
object and link it together with the rest of the system, providing back to the
JIT a table of available symbols which will be used to respond to the
getPointerTo*() queries.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127916 91177308-0d34-0410-b5e6-96231b3b80d8