This commit fixes a bug introduced in r230956 where we were creating
CMovFP_{T,F} nodes with multiple return value types (one for each operand).
With this change the return value type of the new node is the same as the
value type of the True/False operands of the original node.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231237 91177308-0d34-0410-b5e6-96231b3b80d8
In a CFG with the edges A->B->C and A->C, B is an optional branch.
LLVM's default behavior is to lay the blocks out naturally, i.e. A, B,
C, in order to improve code locality and fallthroughs. However, if a
function contains many of those optional branches only a few of which
are taken, this leads to a lot of unnecessary icache misses. Moving B
out of line can work around this.
Review: http://reviews.llvm.org/D7719
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231230 91177308-0d34-0410-b5e6-96231b3b80d8
As is described at http://llvm.org/bugs/show_bug.cgi?id=22408, the GNU linkers
ld.bfd and ld.gold currently only support a subset of the whole range of AArch64
ELF TLS relocations. Furthermore, they assume that some of the code sequences to
access thread-local variables are produced in a very specific sequence.
When the sequence is not as the linker expects, it can silently mis-relaxe/mis-optimize
the instructions.
Even if that wouldn't be the case, it's good to produce the exact sequence,
as that ensures that linkers can perform optimizing relaxations.
This patch:
* implements support for 16MiB TLS area size instead of 4GiB TLS area size. Ideally clang
would grow an -mtls-size option to allow support for both, but that's not part of this patch.
* by default doesn't produce local dynamic access patterns, as even modern ld.bfd and ld.gold
linkers do not support the associated relocations. An option (-aarch64-elf-ldtls-generation)
is added to enable generation of local dynamic code sequence, but is off by default.
* makes sure that the exact expected code sequence for local dynamic and general dynamic
accesses is produced, by making use of a new pseudo instruction. The patch also removes
two (AArch64ISD::TLSDESC_BLR, AArch64ISD::TLSDESC_CALL) pre-existing AArch64-specific pseudo
SDNode instructions that are superseded by the new one (TLSDESC_CALLSEQ).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231227 91177308-0d34-0410-b5e6-96231b3b80d8
Using the implicit default copy assignment operator in the presence of a
user-declared copy ctor is deprecated in C++11.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231225 91177308-0d34-0410-b5e6-96231b3b80d8
Asserting that the source and destination iterators are from the same
region is unnecessary - there's no reason to disallow reassignment from
any regions, so long as they aren't compared.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231224 91177308-0d34-0410-b5e6-96231b3b80d8
When trying to convert a BUILD_VECTOR into a shuffle, we try to split a single source vector that is twice as wide as the destination vector.
We can not do this when we also need the zero vector to create a blend.
This fixes PR22774.
Differential Revision: http://reviews.llvm.org/D8040
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231219 91177308-0d34-0410-b5e6-96231b3b80d8
Since OptionValue (& its base classes) have user-declared dtors, use of
the implicit copy ctor/assignment operator is deprecated in C++11.
Provide them explicitly (defaulted) to avoid depending on this
deprecated feature.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231218 91177308-0d34-0410-b5e6-96231b3b80d8
These objects are never polymorphically owned, so there's no need for
virtual dtors - just make the dtor protected in the base classes, and
make the derived classes final.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231217 91177308-0d34-0410-b5e6-96231b3b80d8
This will now display enum definitions both at the global
scope as well as nested inside of classes. Additionally,
it will no longer display enums at the global scope if the
enum is nested. Instead, it will omit the definition of
the enum globally and instead emit it in the corresponding
class definition.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231215 91177308-0d34-0410-b5e6-96231b3b80d8
(They are called emitDwarfDIE and emitDwarfAbbrevs in their new home)
llvm-dsymutil wants to reuse that code, but it doesn't have a DwarfUnit or
a DwarfDebug object to call those. It has access to an AsmPrinter though.
Having emitDIE in the AsmPrinter also removes the DwarfFile dependency
on DwarfDebug, and thus the patch drops that field.
Differential Revision: http://reviews.llvm.org/D8024
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231210 91177308-0d34-0410-b5e6-96231b3b80d8
GCC 4.7's libstdc++ doesn't have std::map::emplace, but it does have
std::unordered_map::emplace, and the use case here doesn't appear to
need ordering. The container has been changed in a separate/precursor
patch, and now this patch should hopefully build cleanly even with
GCC 4.7.
& then I realized the order of the container did matter, so extra
handling of ordering was added in r231189.
Original commit message:
This makes LiveRange non-copyable, and LiveInterval is already
non-movable (due to the explicit dtor), so now it's non-copyable and
non-movable.
Fix the one case where we were relying on the (deprecated in C++11)
implicit copy ctor of LiveInterval (which happened to work because the
ctor created an object with a null segmentSet, so double-deleting the
null pointer was fine).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231192 91177308-0d34-0410-b5e6-96231b3b80d8
test - we only care that there are two moves in the loop and not
which part is relative to which register anyhow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231191 91177308-0d34-0410-b5e6-96231b3b80d8
The order of this container was needed at one point - so, at that point
create a temporary array of pointers, sort those, then iterate them.
This keeps lookup efficient (& the lesser issue, of allowing the use of
emplace... ), object identity preserved, and ordered iteration in the
one place that requires it.
While this has no functional change, I realize it does mean allocating
an extra data structure and performing a sort - so if this looks suspect
to anyone regarding perf characteristics, I'm all ears.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231189 91177308-0d34-0410-b5e6-96231b3b80d8
There is a known bug where the register coalescer fails to merge
subranges when multiple ranges end up in the "overflow" bit 32 of the
lanemasks. A proper fix for this is complicated so for now this is a
workaround which lets the register coalescer drop the subregister
liveness information (we just loose some precision by that) and
continue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231186 91177308-0d34-0410-b5e6-96231b3b80d8
Apparently something does care about ordering of LiveIntervals... so
revert all that stuff (r231175, r231176, r231177) & take some time to
re-evaluate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231184 91177308-0d34-0410-b5e6-96231b3b80d8
RewriteStatepointsForGC pass emits an alloca for each GC pointer which will be relocated. It then inserts stores after def and all relocations, and inserts loads before each use as well. In the end, mem2reg is used to update IR with relocations in SSA form.
However, there is a problem with inserting stores for values defined by invoke instructions. The code didn't expect a def was a terminator instruction, and inserting instructions after these terminators resulted in malformed IR.
This patch fixes this problem by handling invoke instructions as a special case. If the def is an invoke instruction, the store will be inserted at the beginning of the normal destination block. Since return value from invoke instruction does not dominate the unwind destination block, no action is needed there.
Patch by: Chen Li
Differential Revision: http://reviews.llvm.org/D7923
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231183 91177308-0d34-0410-b5e6-96231b3b80d8
The intrinsic is no longer generated by the front-end. Remove the intrinsic and
auto-upgrade it to a vector shuffle.
Reviewed by Nadav
This is related to rdar://problem/18742778.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231182 91177308-0d34-0410-b5e6-96231b3b80d8
GCC 4.7's libstdc++ doesn't have std::map::emplace, but it does have
std::unordered_map::emplace, and the use case here doesn't appear to
need ordering. The container has been changed in a separate/precursor
patch, and now this patch should hopefully build cleanly even with
GCC 4.7.
Original commit message:
This makes LiveRange non-copyable, and LiveInterval is already
non-movable (due to the explicit dtor), so now it's non-copyable and
non-movable.
Fix the one case where we were relying on the (deprecated in C++11)
implicit copy ctor of LiveInterval (which happened to work because the
ctor created an object with a null segmentSet, so double-deleting the
null pointer was fine).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231176 91177308-0d34-0410-b5e6-96231b3b80d8
This use case doesn't appear to benefit from ordering, and
std::unordered_map has the advantage that it supports emplace (the
LiveInterval values really shouldn't be copyable or movable & they won't
be in a near-future patch).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231175 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This makes it more obvious that the enum definition and the
"StandardName" array is in sync. Mechanically refactored w/ a
python script.
Test Plan: still compiles
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7845
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231172 91177308-0d34-0410-b5e6-96231b3b80d8
This makes LiveRange non-copyable, and LiveInterval is already
non-movable (due to the explicit dtor), so now it's non-copyable and
non-movable.
Fix the one case where we were relying on the (deprecated in C++11)
implicit copy ctor of LiveInterval (which happened to work because the
ctor created an object with a null segmentSet, so double-deleting the
null pointer was fine).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231168 91177308-0d34-0410-b5e6-96231b3b80d8
Introduce -mllvm -sanitizer-coverage-8bit-counters=1
which adds imprecise thread-unfriendly 8-bit coverage counters.
The run-time library maps these 8-bit counters to 8-bit bitsets in the same way
AFL (http://lcamtuf.coredump.cx/afl/technical_details.txt) does:
counter values are divided into 8 ranges and based on the counter
value one of the bits in the bitset is set.
The AFL ranges are used here: 1, 2, 3, 4-7, 8-15, 16-31, 32-127, 128+.
These counters provide a search heuristic for single-threaded
coverage-guided fuzzers, we do not expect them to be useful for other purposes.
Depending on the value of -fsanitize-coverage=[123] flag,
these counters will be added to the function entry blocks (=1),
every basic block (=2), or every edge (=3).
Use these counters as an optional search heuristic in the Fuzzer library.
Add a test where this heuristic is critical.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231166 91177308-0d34-0410-b5e6-96231b3b80d8
Ultimately, we'll need to leave something behind to indicate which
alloca will hold the exception, but we can figure that out when it comes
time to emit the __CxxFrameHandler3 catch handler table.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231164 91177308-0d34-0410-b5e6-96231b3b80d8