Backends like OptParserEmitter assume that record names can be used as valid
identifiers.
The period '.' in generated anonymous names broke that assumption, causing a
build-time error and in practice forcing all records to be named.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197869 91177308-0d34-0410-b5e6-96231b3b80d8
If the extension of a loaded value is compared against zero and used in
other arithmetic, InstCombine will change the comparison to use the
unextended load. It's also possible that the comparison could be against
the unextended load from the outset.
In DAG form this becomes a truncation of an extending load. We want to
strip the truncation if possible so that we can use load-and-test instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197804 91177308-0d34-0410-b5e6-96231b3b80d8
The handling of ANY_EXTEND and ZERO_EXTEND was too strict. In this context
we can treat ZERO_EXTEND in much the same way as an AND and then also handle
outermost ZERO_EXTENDs.
I couldn't find a test that benefited from the ANY_EXTEND change, but it's
more obvious to write it this way once SIGN_EXTEND and ZERO_EXTEND are
handled differently.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197802 91177308-0d34-0410-b5e6-96231b3b80d8
If we happen to eliminate every case in a switch that has branch
weights, we currently try to create metadata for the one remaining
branch, triggering an assert. Instead, we need to check that the
metadata we're trying to create is sensible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197791 91177308-0d34-0410-b5e6-96231b3b80d8
The .pool directive is an alias for the .ltorg directive used to create a
literal pool. Simply treat .pool as if .ltorg was passed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197787 91177308-0d34-0410-b5e6-96231b3b80d8
v2: Add ftrunc->TRUNC pattern instead of replacing int_AMDGPU_trunc
v3: move ftrunc pattern next to TRUNC definition, it's available since R600
Patch By: Jan Vesely
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197783 91177308-0d34-0410-b5e6-96231b3b80d8
when you want to have the full list of addresses for a particular CU or
when you have multiple modules linked together and can't depend upon the
ordering of a single CU for begin/end ranges.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197776 91177308-0d34-0410-b5e6-96231b3b80d8
this commit as the only one on the Blamelist so I quickly reverted this.
However it was actually Nick's change who has since fixed that issue.
Original commit message:
Changed the X86 assembler for intel syntax to work with directional labels.
The X86 assembler as a separate code to parser the intel assembly syntax
in X86AsmParser::ParseIntelOperand(). This did not parse directional labels.
And if something like 1f was used as a branch target it would get an
"Unexpected token" error.
The fix starts in X86AsmParser::ParseIntelExpression() in the case for
AsmToken::Integer, it needs to grab the IntVal from the current token
then look for a 'b' or 'f' following an Integer. Then it basically needs to
do what is done in AsmParser::parsePrimaryExpr() for directional
labels. It saves the MCExpr it creates in the IntelExprStateMachine
in the Sym field.
When it returns to X86AsmParser::ParseIntelOperand() it looks
for a non-zero Sym field in the IntelExprStateMachine and if
set it creates a memory operand not an immediate operand
it would normally do for the Integer.
rdar://14961158
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197744 91177308-0d34-0410-b5e6-96231b3b80d8
The X86 assembler has a separate code to parser the intel assembly syntax
in X86AsmParser::ParseIntelOperand(). This did not parse directional labels.
And if something like 1f was used as a branch target it would get an
"Unexpected token" error.
The fix starts in X86AsmParser::ParseIntelExpression() in the case for
AsmToken::Integer, it needs to grab the IntVal from the current token
then look for a 'b' or 'f' following the Integer. Then it basically needs to
do what is done in AsmParser::parsePrimaryExpr() for directional
labels. It saves the MCExpr it creates in the IntelExprStateMachine
in the Sym field.
When it returns to X86AsmParser::ParseIntelOperand() it looks
for a non-zero Sym field in the IntelExprStateMachine and if
set it creates a memory operand not an immediate operand
it would normally do for the Integer.
rdar://14961158
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197728 91177308-0d34-0410-b5e6-96231b3b80d8
The condition in selects is supposed to be i1.
Make sure we are just reading the less significant bit
of the 8 bits width value to match this constraint.
<rdar://problem/15651765>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197712 91177308-0d34-0410-b5e6-96231b3b80d8
This directive will write out the assembler-maintained constant
pool for the current section. These constant pools are created to
support the ldr-pseudo instruction (e.g. ldr r0, =val).
The directive can be used by the programmer to place the constant
pool in a location that can be reached by a pc-relative offset in
the ldr instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197711 91177308-0d34-0410-b5e6-96231b3b80d8
The ldr-pseudo opcode is a convenience for loading 32-bit constants.
It is converted into a pc-relative load from a constant pool. For
example,
ldr r0, =0x10001
ldr r1, =bar
will generate this output in the final assembly
ldr r0, .Ltmp0
ldr r1, .Ltmp1
...
.Ltmp0: .long 0x10001
.Ltmp1: .long bar
Sketch of the LDR pseudo implementation:
Keep a map from Section => ConstantPool
When parsing ldr r0, =val
parse val as an MCExpr
get ConstantPool for current Section
Label = CreateTempSymbol()
remember val in ConstantPool at next free slot
add operand to ldr that is MCSymbolRef of Label
On finishParse() callback
Write out all non-empty constant pools
for each Entry in ConstantPool
Emit Entry.Label
Emit Entry.Value
Possible improvements to be added in a later patch:
1. Does not convert load of small constants to mov
(e.g. ldr r0, =0x1 => mov r0, 0x1)
2. Does reuse constant pool entries for same constant
The implementation was tested for ARM, Thumb1, and Thumb2 targets on
linux and darwin.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197708 91177308-0d34-0410-b5e6-96231b3b80d8
The tests for the disassembler were adapted from the encoder tests, and for the
most part, the output from the disassembler matches that encoder-test inputs.
There are some places where more-informative mnemonics could be produced
(notably for the branch instructions), and those cases are noted in the tests
with FIXMEs.
Future work includes:
- Generating more-informative mnemonics when possible (this may also be done
in the printer).
- Remove the dependence on positional "numbered" operand-to-variable mapping
(for both encoding and decoding).
- Internally using 64-bit instruction variants in 64-bit mode (if this turns
out to matter).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197693 91177308-0d34-0410-b5e6-96231b3b80d8
Currently SplitBlockAndInsertIfThen requires that branch condition is an
Instruction itself, which is very inconvenient, because it is sometimes an
Operator, or even a Constant.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197677 91177308-0d34-0410-b5e6-96231b3b80d8
Rationale: going to land D2425 shortly.
I'll re-land these COFF files along with D2425 to simplify the SVN history
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197673 91177308-0d34-0410-b5e6-96231b3b80d8
Different sized address spaces should theoretically work
most of the time now, and since 64-bit add is currently
disabled, using more 32-bit pointers fixes some cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197659 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for the .inst directive. This is an ARM specific directive to
indicate an instruction encoded as a constant expression. The major difference
between .word, .short, or .byte and .inst is that the latter will be
disassembled as an instruction since it does not get flagged as data.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197657 91177308-0d34-0410-b5e6-96231b3b80d8
This changes the MachineFrameInfo API to use the new SSPLayoutKind information
produced by the StackProtector pass (instead of a boolean flag) and updates a
few pass dependencies (to preserve the SSP analysis).
The stack layout follows the same approach used prior to this change - i.e.,
only LargeArray stack objects will be placed near the canary and everything
else will be laid out normally. After this change, structures containing large
arrays will also be placed near the canary - a case previously missed by the
old implementation.
Out of tree targets will need to update their usage of
MachineFrameInfo::CreateStackObject to remove the MayNeedSP argument.
The next patch will implement the rules for sspstrong and sspreq. The end goal
is to support ssp-strong stack layout rules.
WIP.
Differential Revision: http://llvm-reviews.chandlerc.com/D2158
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197653 91177308-0d34-0410-b5e6-96231b3b80d8
The inalloca attribute is designed to support passing C++ objects by
value in the Microsoft C++ ABI. It behaves the same as byval, except
that it always implies that the argument is in memory and that the bytes
are never copied. This attribute allows the caller to take the address
of an outgoing argument's memory and execute arbitrary code to store
into it.
This patch adds basic IR support, docs, and verification. It does not
attempt to implement any lowering or fix any possibly broken transforms.
When this patch lands, a complete description of this feature should
appear at http://llvm.org/docs/InAlloca.html .
Differential Revision: http://llvm-reviews.chandlerc.com/D2173
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197645 91177308-0d34-0410-b5e6-96231b3b80d8
Similar to the file summaries, the function summaries output line,
branching and call statistics. The file summaries have been moved
outside the initial loop so that all of the function summaries can be
outputted before file summaries.
Also updated test cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197633 91177308-0d34-0410-b5e6-96231b3b80d8
tail call optimization. Some more work may be needed for indirect
calls but this patch fixes the current regression in Prolangc++/trees.
S2 optimization as part of the general cleanup and optimization
of prolog and epilog was not saving S2 in this case and needed to.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197630 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r197466.
The MachineCSE fix that required the -mcpu flag has been disabled
until more work can be done to fix downstream issues. Adding -mcpu
wasn't the right workaround anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197624 91177308-0d34-0410-b5e6-96231b3b80d8
Given vsel_cc, op1, op2, since vsel has no LE/LT, to generate vsel for
such selection, it needs to inverse cc and swap op1 and op2. To inverse
cc, both L/G and E bits should be flipped.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197615 91177308-0d34-0410-b5e6-96231b3b80d8
File summaries will now be optionally outputted which will give line,
branching and call coverage info. Unfortunately, clang's current
instrumentation does not give enough information to deduce function
calls, something that gcc is able to do. Thus, no calls are always
outputted to be consistent with gcov output.
Also updated tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197606 91177308-0d34-0410-b5e6-96231b3b80d8