extraneous whitespace. Trying to clean-up this pass as much as I can
before I start making functional changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142780 91177308-0d34-0410-b5e6-96231b3b80d8
to bring it under direct test instead of merely indirectly testing it in
the BlockFrequencyInfo pass.
The next step is to start adding tests for the various heuristics
employed, and to start fixing those heuristics once they're under test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142778 91177308-0d34-0410-b5e6-96231b3b80d8
to get important constant branch probabilities and use them for finding
the best branch out of a set of possibilities.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142762 91177308-0d34-0410-b5e6-96231b3b80d8
discussions with Andy. Fundamentally, the previous algorithm is both
counter productive on several fronts and prioritizing things which
aren't necessarily the most important: static branch prediction.
The new algorithm uses the existing loop CFG structure information to
walk through the CFG itself to layout blocks. It coalesces adjacent
blocks within the loop where the CFG allows based on the most likely
path taken. Finally, it topologically orders the block chains that have
been formed. This allows it to choose a (mostly) topologically valid
ordering which still priorizes fallthrough within the structural
constraints.
As a final twist in the algorithm, it does violate the CFG when it
discovers a "hot" edge, that is an edge that is more than 4x hotter than
the competing edges in the CFG. These are forcibly merged into
a fallthrough chain.
Future transformations that need te be added are rotation of loop exit
conditions to be fallthrough, and better isolation of cold block chains.
I'm also planning on adding statistics to model how well the algorithm
does at laying out blocks based on the probabilities it receives.
The old tests mostly still pass, and I have some new tests to add, but
the nested loops are still behaving very strangely. This almost seems
like working-as-intended as it rotated the exit branch to be
fallthrough, but I'm not convinced this is actually the best layout. It
is well supported by the probabilities for loops we currently get, but
those are pretty broken for nested loops, so this may change later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142743 91177308-0d34-0410-b5e6-96231b3b80d8
element types, even though the element extraction code does. It is surprising
that this bug has been here for so long. Fixes <rdar://problem/10318778>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142740 91177308-0d34-0410-b5e6-96231b3b80d8
able to constant fold load instructions where the argument is a constant.
Second, we should be able to watch multiple PHI nodes through the loop; this
patch only supports PHIs in loop headers, more can be done here.
With this patch, we now constant evaluate:
static const int arr[] = {1, 2, 3, 4, 5};
int test() {
int sum = 0;
for (int i = 0; i < 5; ++i) sum += arr[i];
return sum;
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142731 91177308-0d34-0410-b5e6-96231b3b80d8
SHL inserts zeros from the right, thus even when the original
sign_extend_inreg value was of 1-bit, we need to sra.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142724 91177308-0d34-0410-b5e6-96231b3b80d8
that the set of callee-saved registers is correct for the specific platform.
<rdar://problem/10313708> & ctor_dtor_count & ctor_dtor_count-2
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142706 91177308-0d34-0410-b5e6-96231b3b80d8
The assumption in the back-end is that PHIs are not allowed at the start of the
landing pad block for SjLj exceptions.
<rdar://problem/10313708>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142689 91177308-0d34-0410-b5e6-96231b3b80d8
Next step in the ongoing saga of NEON load/store assmebly parsing. Handle
VLD1 instructions that take a two-register register list.
Adjust the instruction definitions to only have the single encoded register
as an operand. The super-register from the pseudo is kept as an implicit def,
so passes which come after pseudo-expansion still know that the instruction
defines the other subregs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142670 91177308-0d34-0410-b5e6-96231b3b80d8
ZExtPromotedInteger and SExtPromotedInteger based on the operation we legalize.
SetCC return type needs to be legalized via PromoteTargetBoolean.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142660 91177308-0d34-0410-b5e6-96231b3b80d8
it's a bit more plausible to use this instead of CodePlacementOpt. The
code for this was shamelessly stolen from CodePlacementOpt, and then
trimmed down a bit. There doesn't seem to be much utility in returning
true/false from this pass as we may or may not have rewritten all of the
blocks. Also, the statistic of counting how many loops were aligned
doesn't seem terribly important so I removed it. If folks would like it
to be included, I'm happy to add it back.
This was probably the most egregious of the missing features, and now
I'm going to start gathering some performance numbers and looking at
specific loop structures that have different layout between the two.
Test is updated to include both basic loop alignment and nested loop
alignment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142645 91177308-0d34-0410-b5e6-96231b3b80d8