This patch adds 'FeatureSlowSHLD' to 'bdver3'.
According to the official AMD optimization guide for amdfam15: "Using
alternative code in place of SHLD achieves lower overall latency and
requires fewer execution resources. The 32-bit and 64-bit forms of
ADD, ADC, SHR, and LEA (except 16-bit form) are DirectPath
instructions, while SHLD is a VectorPath instruction."
This patch also explicitly sets feature AVX and SSE4A for all the bdver*
cpus. This part of the patch is a non-functional change and it is mainly
done for clarity reasons (Both XOP and FMA4 already imply AVX and SSE4A).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221296 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Appropriately set/clear the FeatureBit for Mips16 when these assembler directives are used and also emit ".set nomips16" (previously, only ".set mips16" was being emitted).
These improvements allow for better testing of the .cpload/.cprestore assembler directives (which are not supposed to work when Mips16 is enabled).
Test Plan: The test is bare-bones because there are no MC tests for Mips16 instructions (there's only one, which checks that the Mips16 ELF header flag gets set), and that suggests to me that it has not been implemented yet in the IAS.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5462
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221277 91177308-0d34-0410-b5e6-96231b3b80d8
register class tGPRRegClass if the target is thumb1.
This commit fixes a crash that occurs during register allocation which was
triggered when a virtual register defined by an inline-asm instruction had to
be spilled.
rdar://problem/18740489
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221178 91177308-0d34-0410-b5e6-96231b3b80d8
For 8-bit divrems where the remainder is used, we used to generate:
divb %sil
shrw $8, %ax
movzbl %al, %eax
That was to avoid an H-reg access, which is problematic mainly because
it isn't possible in REX-prefixed instructions.
This patch optimizes that to:
divb %sil
movzbl %ah, %eax
To do that, we explicitly extend AH, and extract the L-subreg in the
resulting register. The extension is done using the NOREX variants of
MOVZX. To support signed operations, MOVSX_NOREX is also added.
Further, this introduces a new SDNode type, [us]divrem_ext_hreg, which is
then lowered to a sequence containing a single zext (rather than 2).
Differential Revision: http://reviews.llvm.org/D6064
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221176 91177308-0d34-0410-b5e6-96231b3b80d8
Function calls aren't supported yet.
This was reverted due to build breakages, which should be fixed now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221173 91177308-0d34-0410-b5e6-96231b3b80d8
Change `Instruction::getAllMetadataOtherThanDebugLoc()` from a vector of
`MDNode` to one of `Value`. Part of PR21433.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221167 91177308-0d34-0410-b5e6-96231b3b80d8
This CPU definition is redundant. The Cortex-A9 is defined as
supporting multiprocessing extensions. Remove its definition and
update appropriate tests.
LLVM defines both a cortex-a9 CPU and a cortex-a9-mp CPU. The only
difference between the two CPU definitions in ARM.td is that
cortex-a9-mp contains the feature FeatureMP for multiprocessing
extensions.
This is redundant since the Cortex-A9 is defined as having
multiprocessing extensions in the TRMs. armcc also defines the
Cortex-A9 as having multiprocessing extensions by default.
Change-Id: Ifcadaa6c322be0a33d9d2a39cfdd7da1d75981a7
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221166 91177308-0d34-0410-b5e6-96231b3b80d8
Some literals in the AArch64 backend had 15 'f's rather than 16, causing
comparisons with a constant 0xffffffffffffffff to be miscompiled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221157 91177308-0d34-0410-b5e6-96231b3b80d8
The problem is mostly that variadic output instruction
aren't handled, so it is rejected for having an inconsistent
number of operands, and then the right number of operands
isn't emitted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221117 91177308-0d34-0410-b5e6-96231b3b80d8
sret arguments can never originate from an f128 argument so we detect
sret arguments and push false into OriginalArgWasF128.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221102 91177308-0d34-0410-b5e6-96231b3b80d8
r221056 "[mips] Move F128 argument handling into MipsCCState as we did for returns. NFC."
r221058 "[mips] Fix unused variable warning introduced in r221056"
r221059 "[mips] Move all ByVal handling into CCState and tablegen-erated code. NFC."
r221061 "Renamed CCState members that appear to misspell 'Processed' as 'Proceed'. NFC."
It cuased an undefined behavior in LLVM :: CodeGen/Mips/return-vector.ll.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221081 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
CCState already contains a byval implementation that is very similar to the
Mips custom code. This patch merges the custom code into the existing
common code and tablegen-erated code.
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: rnk, llvm-commits
Differential Revision: http://reviews.llvm.org/D5977
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221059 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
There are a couple more changes to make before analyzeFormalArguments can
be merged into the standard AnalyzeFormalArguments. I've had to temporarily
poke a couple holes in MipsCCState's encapsulation to save having to make
all the required changes for this merge all at once*. These will be removed
shortly.
* We must merge our ByVal argument handling with the implementation in CCState.
This will be done over the next three patches, then the fourth will merge
analyzeFormalArguments with AnalyzeFormalArguments.
Depends on D5967
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5969
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221056 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
It's now passed in as an argument to functions that need it. Eventually
this argument will be replaced by the 'this' pointer for a MipsCCState
object.
Depends on D5966
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5967
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221054 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
There is one remaining trace of it in MipsCC::analyzeCallOperands() where
Mips16 might override the calling convention. This will moved into
tablegen-erated code later.
Depends on D5965
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5966
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221053 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
CustomCallingConv is simply a CallingConv that tablegen should not generate the
implementation for. It allows regular CallingConv's to delegate to these custom
functions. This is (currently) necessary for Mips and we cannot use CCCustom
without having to adapt to the different API that CCCustom uses.
This brings us a bit closer to being able to remove
MipsCC::analyzeCallOperands and MipsCC::analyzeFormalArguments in favour of
the common implementation.
No functional change to the targets.
Depends on D3341
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: vmedic, llvm-commits
Differential Revision: http://reviews.llvm.org/D5965
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221052 91177308-0d34-0410-b5e6-96231b3b80d8
This removes calls to isMaterializable in the following cases:
* It was redundant with a call to isDeclaration now that isDeclaration returns
the correct answer for materializable functions.
* It was followed by a call to Materialize. Just call Materialize and check EC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221050 91177308-0d34-0410-b5e6-96231b3b80d8
It seems I can't commit unless $DBUS_SESSION_BUS_ADDRESS is set correctly and
it is not set for ssh sessions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221049 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r221028. Later commits depend on this and
reverting just this one causes even more bots to fail.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221041 91177308-0d34-0410-b5e6-96231b3b80d8
"[x86] Simplify vector selection if condition value type matches vselect value type and true value is all ones or false value is all zeros."
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221028 91177308-0d34-0410-b5e6-96231b3b80d8
Change `Instruction::getMetadata()` to return `Value` as part of
PR21433.
Update most callers to use `Instruction::getMDNode()`, which wraps the
result in a `cast_or_null<MDNode>`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221024 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r220996.
It introduced layering violations causing link errors in many
configurations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221020 91177308-0d34-0410-b5e6-96231b3b80d8
It appears to ignore or find ambiguous MachineInstrBuilder's conversion
operators that allow conversion to MachineInstr* and
MachineBasicBlock::bundle_iterator.
As a workaround, add an explicit way to get the MachineInstr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221017 91177308-0d34-0410-b5e6-96231b3b80d8
We need to figure out how to track ptrtoint values all the
way until result is converted back to a pointer in order
to correctly rewrite the pointer type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220997 91177308-0d34-0410-b5e6-96231b3b80d8
Now that we have initial support for VSX, we can begin adding
intrinsics for programmer access to VSX instructions. This patch adds
basic support for VSX intrinsics in general, and tests it by
implementing intrinsics for minimum and maximum for the vector double
data type.
The LLVM portion of this is quite straightforward. There is a
companion patch for Clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220988 91177308-0d34-0410-b5e6-96231b3b80d8
Our internal test reveals such case should not be transformed:
cmp x17, #3
b.lt .LBB10_15
...
subs x12, x12, #1
b.gt .LBB10_1
where x12 is a liveout, becomes:
cmp x17, #2
b.le .LBB10_15
...
subs x12, x12, #2
b.ge .LBB10_1
Unable to provide test case as it's difficult to reproduce on community branch.
http://reviews.llvm.org/D6048
Patch by Zhaoshi Zheng <zhaoshiz@codeaurora.org>!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220987 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds an optimization in CodeGenPrepare to move an extractelement
right before a store when the target can combine them.
The optimization may promote any scalar operations to vector operations in the
way to make that possible.
** Context **
Some targets use different register files for both vector and scalar operations.
This means that transitioning from one domain to another may incur copy from one
register file to another. These copies are not coalescable and may be expensive.
For example, according to the scheduling model, on cortex-A8 a vector to GPR
move is 20 cycles.
** Motivating Example **
Let us consider an example:
define void @foo(<2 x i32>* %addr1, i32* %dest) {
%in1 = load <2 x i32>* %addr1, align 8
%extract = extractelement <2 x i32> %in1, i32 1
%out = or i32 %extract, 1
store i32 %out, i32* %dest, align 4
ret void
}
As it is, this IR generates the following assembly on armv7:
vldr d16, [r0] @vector load
vmov.32 r0, d16[1] @ cross-register-file copy: 20 cycles
orr r0, r0, #1 @ scalar bitwise or
str r0, [r1] @ scalar store
bx lr
Whereas we could generate much faster code:
vldr d16, [r0] @ vector load
vorr.i32 d16, #0x1 @ vector bitwise or
vst1.32 {d16[1]}, [r1:32] @ vector extract + store
bx lr
Half of the computation made in the vector is useless, but this allows to get
rid of the expensive cross-register-file copy.
** Proposed Solution **
To avoid this cross-register-copy penalty, we promote the scalar operations to
vector operations. The penalty will be removed if we manage to promote the whole
chain of computation in the vector domain.
Currently, we do that only when the chain of computation ends by a store and the
target is able to combine an extract with a store.
Stores are the most likely candidates, because other instructions produce values
that would need to be promoted and so, extracted as some point[1]. Moreover,
this is customary that targets feature stores that perform a vector extract (see
AArch64 and X86 for instance).
The proposed implementation relies on the TargetTransformInfo to decide whether
or not it is beneficial to promote a chain of computation in the vector domain.
Unfortunately, this interface is rather inaccurate for this level of details and
although this optimization may be beneficial for X86 and AArch64, the inaccuracy
will lead to the optimization being too aggressive.
Basically in TargetTransformInfo, everything that is legal has a cost of 1,
whereas, even if a vector type is legal, usually a vector operation is slightly
more expensive than its scalar counterpart. That will lead to too many
promotions that may not be counter balanced by the saving of the
cross-register-file copy. For instance, on AArch64 this penalty is just 4
cycles.
For now, the optimization is just enabled for ARM prior than v8, since those
processors have a larger penalty on cross-register-file copies, and the scope is
limited to basic blocks. Because of these two factors, we limit the effects of
the inaccuracy. Indeed, I did not want to build up a fancy cost model with block
frequency and everything on top of that.
[1] We can imagine targets that can combine an extractelement with other
instructions than just stores. If we want to go into that direction, the current
interfaces must be augmented and, moreover, I think this becomes a global isel
problem.
Differential Revision: http://reviews.llvm.org/D5921
<rdar://problem/14170854>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220978 91177308-0d34-0410-b5e6-96231b3b80d8
Since block address values can be larger than 2GB in 64-bit code, they
cannot be loaded simply using an @l / @ha pair, but instead must be
loaded from the TOC, just like GlobalAddress, ConstantPool, and
JumpTable values are.
The commit also fixes a bug in PPCLinuxAsmPrinter::doFinalization where
temporary labels could not be used as TOC values, since code would
attempt (and fail) to use GetOrCreateSymbol to create a symbol of the
same name as the temporary label.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220959 91177308-0d34-0410-b5e6-96231b3b80d8