The memcpy() and overlap helps didn't help much with timings, so clean up the change.
The difference at this point is that we now leave growth of the storage buffer
up to SmallVector's implementation:
- OS.reserve(OS.capacity() * 2);
+ OS.reserve(OS.size() + 64);
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212837 91177308-0d34-0410-b5e6-96231b3b80d8
These two routines didn't take a "const MCSymbolData &SD"
like the other MCELF::Get routines for some reason ...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212834 91177308-0d34-0410-b5e6-96231b3b80d8
This commit fixes a bug in PPCRegisterInfo::isFrameOffsetLegal that
could result in the LocalStackAlloc pass creating an MI instruction
out-of-range displacement:
%vreg17<def> = LD 33184, %vreg31; mem:LD8[%g](align=32)
%G8RC:%vreg17 G8RC_and_G8RC_NOX0:%vreg31
(In final assembler output the top bits are stripped off, resulting
in a negative offset loading from below the stack pointer.)
Common code expects the isFrameOffsetLegal routine to verify whether
adding a given offset to the offset already present in the instruction
results in a valid displacement. However, on PowerPC the routine
did not take the already present instruction offset into account.
This commit fixes isFrameOffsetLegal to add the instruction offset,
and updates a local caller (needsFrameBaseReg) to no longer add the
instruction offset itself before calling isFrameOffsetLegal.
Reviewed by Hal Finkel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212832 91177308-0d34-0410-b5e6-96231b3b80d8
We need the intrinsics with offsets, so why not just add them all.
The R128 parameter will also be useful for reducing SGPR usage.
GL_ARB_image_load_store also adds some image GLSL modifiers like "coherent",
so Mesa will probably translate those to slc, glc, etc.
When LLVM 3.5 is released, I'll switch Mesa to these new intrinsics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212830 91177308-0d34-0410-b5e6-96231b3b80d8
It was conflicting with def TEX_SHADOW_ARRAY, which also handles them.
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212829 91177308-0d34-0410-b5e6-96231b3b80d8
Including the scratch buffer size in the initial reservation eliminates the
subsequent malloc+move operation and offers a healthier constant growth with
less memory wastage.
When doing this, take care to avoid invalidating the source buffer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212816 91177308-0d34-0410-b5e6-96231b3b80d8
ACLE 2.0 allows __fp16 to be used as a function argument or return
type. This enables this for AArch64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212812 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Add FileCheck -implicit-check-not option which allows specifying a
pattern that should only occur in the input when explicitly matched by a
positive check. This feature allows checking tool diagnostics in a way
clang -verify does it for compiler diagnostics.
The option has been tested on a number of clang-tidy checks, I'll post a link to
the clang-tidy patch to this thread.
Once there's an agreement on the general direction, I can add tests and
documentation.
Reviewers: djasper, bkramer
Reviewed By: bkramer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4462
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212810 91177308-0d34-0410-b5e6-96231b3b80d8
No functional change. As I was trying to understand this function, I found
that variables were reused with confusing names and the broadcast case was a
bit too implicit. Hopefully, this is an improvement.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212795 91177308-0d34-0410-b5e6-96231b3b80d8
It was computing the VL/n case as:
MemObjSize = VectorByteSize / ElemByteSize / Divider * ElemByteSize
ElemByteSize not only falls out but VectorByteSize/Divider now actually
matches the definition of VL/n.
Also some formatting fixes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212794 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r212776.
Nope, still seems to be failing on the sanitizer bots... but hey, not
the msan self-host anymore, it's failing in asan now. I'll start looking
there next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212793 91177308-0d34-0410-b5e6-96231b3b80d8
RuntimeDyldChecker.
This allows us to remove one of the six remaining object files in the LLVM
source tree.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212780 91177308-0d34-0410-b5e6-96231b3b80d8
The compiler often emits assembler-local labels (beginning with 'L') for use in
relocation expressions, however these aren't included in the object files.
Teach RuntimeDyldChecker to warn the user if they try to use one of these in an
expression, since it will never work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212777 91177308-0d34-0410-b5e6-96231b3b80d8
Committed in r212205 and reverted in r212226 due to msan self-hosting
failure, I believe I've got that fixed by r212761 to Clang.
Original commit message:
"Originally committed in r211723, reverted in r211724 due to failure
cases found and fixed (ArgumentPromotion: r211872, Inlining: r212065),
committed again in r212085 and reverted again in r212089 after fixing
some other cases, such as debug info subprogram lists not keeping track
of the function they represent (r212128) and then short-circuiting
things like LiveDebugVariables that build LexicalScopes for functions
that might not have full debug info.
And again, I believe the invariant actually holds for some reasonable
amount of code (but I'll keep an eye on the buildbots and see what
happens... ).
Original commit message:
PR20038: DebugInfo: Inlined call sites where the caller has debug info
but the call itself has no debug location.
This situation does bad things when inlined, so I've fixed Clang not to
produce inlinable call sites without locations when the caller has debug
info (in the one case where I could find that this occurred). This
updates the PR20038 test case to be what clang now produces, and readds
the assertion that had to be removed due to this bug.
I've also beefed up the debug info verifier to help diagnose these
issues in the future, and I hope to add checks to the inliner to just
assert-fail if it encounters this situation. If, in the future, we
decide we have to cope with this situation, the right thing to do is
probably to just remove all the DebugLocs from the inlined
instructions."
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212776 91177308-0d34-0410-b5e6-96231b3b80d8
Use alg. from LegalizeDAG.cpp
Move Expand setting to SIISellowering
v2: Extend existing tests instead of creating new ones
v3: use separate LowerFPTOSINT function
v4: use TargetLowering::expandFP_TO_SINT
add comment about using FP_TO_SINT for uints
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
Reviewed-by: Tom Stellard <tom@stellard.net>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212773 91177308-0d34-0410-b5e6-96231b3b80d8
Move the code to a helper function to allow calls from TypeLegalizer.
No functionality change intended
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
Reviewed-by: Tom Stellard <tom@stellard.net>
Reviewed-by: Owen Anderson <resistor@mac.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212772 91177308-0d34-0410-b5e6-96231b3b80d8
Add test cases where we don't expect to trigger the combine optimizations
introduced at revision 212748.
No functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212756 91177308-0d34-0410-b5e6-96231b3b80d8
This patch teaches the DAGCombiner how to fold shuffles according to the
following new rules:
1. shuffle(shuffle(x, y), undef) -> x
2. shuffle(shuffle(x, y), undef) -> y
3. shuffle(shuffle(x, y), undef) -> shuffle(x, undef)
4. shuffle(shuffle(x, y), undef) -> shuffle(y, undef)
The backend avoids to combine shuffles according to rules 3. and 4. if
the resulting shuffle does not have a legal mask. This is to avoid introducing
illegal shuffles that are potentially expanded into a sub-optimal sequence of
target specific dag nodes during vector legalization.
Added test case combine-vec-shuffle-2.ll to verify that we correctly triggers
the new rules when combining shuffles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212748 91177308-0d34-0410-b5e6-96231b3b80d8
Also, add a case clause in X86InstrInfo::shouldScheduleAdjacent to enable
macro-fusion.
<rdar://problem/15680770>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212747 91177308-0d34-0410-b5e6-96231b3b80d8
passes in the mips back end. This, unfortunately, required a
bit of churn in the various predicates to use a pointer rather
than a reference.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212744 91177308-0d34-0410-b5e6-96231b3b80d8
Fix a crash in `InstCombiner::Descale()` when a multiply-by-zero gets
created as an argument to a GEP partway through an iteration, causing
-instcombine to optimize the GEP before the multiply.
rdar://problem/17615671
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212742 91177308-0d34-0410-b5e6-96231b3b80d8
Aliases inherit their comdat from their aliasee, they don't have an
explicit comdat.
This fixes PR20279.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212732 91177308-0d34-0410-b5e6-96231b3b80d8
This is the one remaining place I see where passing
isSafeToSpeculativelyExecute a DataLayout pointer might matter (at least for
loads) -- I think I got the others in r212720. Most of the other remaining
callers of isSafeToSpeculativelyExecute only use it for call sites (or
otherwise exclude loads).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212730 91177308-0d34-0410-b5e6-96231b3b80d8
Remove a default label which covered no enumerators, replace it with a
llvm_unreachable.
No functionality changed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212729 91177308-0d34-0410-b5e6-96231b3b80d8
This patch teaches the AsmParser to accept some logical+immediate
instructions and convert them as shown:
bic Rd, Rn, #imm -> and Rd, Rn, #~imm
bics Rd, Rn, #imm -> ands Rd, Rn, #~imm
orn Rd, Rn, #imm -> orr Rd, Rn, #~imm
eon Rd, Rn, #imm -> eor Rd, Rn, #~imm
Those instructions are an alternate syntax available to assembly coders,
and are needed in order to support code already compiling with some other
assemblers. For example, the bic construct is used by the linux kernel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212722 91177308-0d34-0410-b5e6-96231b3b80d8
isSafeToSpeculativelyExecute can optionally take a DataLayout pointer. In the
past, this was mainly used to make better decisions regarding divisions known
not to trap, and so was not all that important for users concerned with "cheap"
instructions. However, now it also helps look through bitcasts for
dereferencable loads, and will also be important if/when we add a
dereferencable pointer attribute.
This is some initial work to feed a DataLayout pointer through to callers of
isSafeToSpeculativelyExecute, generally where one was already available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212720 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When -mno-odd-spreg is in effect, 32-bit floating point values are not
permitted in odd FPU registers. The option also prohibits 32-bit and 64-bit
floating point comparison results from being written to odd registers.
This option has three purposes:
* It allows support for certain MIPS implementations such as loongson-3a that
do not allow the use of odd registers for single precision arithmetic.
* When using -mfpxx, -mno-odd-spreg is the default and this allows us to
statically check that code is compliant with the O32 FPXX ABI since mtc1/mfc1
instructions to/from odd registers are guaranteed not to appear for any
reason. Once this has been established, the user can then re-enable
-modd-spreg to regain the use of all 32 single-precision registers.
* When using -mfp64 and -mno-odd-spreg together, an O32 extension named
O32 FP64A is used as the ABI. This is intended to provide almost all
functionality of an FR=1 processor but can also be executed on a FR=0 core
with the assistance of a hardware compatibility mode which emulates FR=0
behaviour on an FR=1 processor.
* Added '.module oddspreg' and '.module nooddspreg' each of which update
the .MIPS.abiflags section appropriately
* Moved setFpABI() call inside emitDirectiveModuleFP() so that the caller
doesn't have to remember to do it.
* MipsABIFlags now calculates the flags1 and flags2 member on demand rather
than trying to maintain them in the same format they will be emitted in.
There is one portion of the -mfp64 and -mno-odd-spreg combination that is not
implemented yet. Moves to/from odd-numbered double-precision registers must not
use mtc1. I will fix this in a follow-up.
Differential Revision: http://reviews.llvm.org/D4383
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212717 91177308-0d34-0410-b5e6-96231b3b80d8
to the zero-extend-vector-inreg node introduced previously for the same
purpose: manage the type legalization of widened extend operations,
especially to support the experimental widening mode for x86.
I'm adding both because sign-extend is expanded in terms of any-extend
with shifts to propagate the sign bit. This removes the last
fundamental scalarization from vec_cast2.ll (a test case that hit many
really bad edge cases for widening legalization), although the trunc
tests in that file still appear scalarized because the the shuffle
legalization is scalarizing. Funny thing, I've been working on that.
Some initial experiments with this and SSE2 scenarios is showing
moderately good behavior already for sign extension. Still some work to
do on the shuffle combining on X86 before we're generating optimal
sequences, but avoiding scalarization is a huge step forward.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212714 91177308-0d34-0410-b5e6-96231b3b80d8
There's no real need to have Shift as a separate format type from Binary.
The comments for other format types were too specific and in some cases
no longer accurate.
Just a clean-up, no behavioral change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212707 91177308-0d34-0410-b5e6-96231b3b80d8