Besides adding the new insertPass function, this patch uses it to
enhance the existing -print-machineinstrs so that the MachineInstrs
after a specific pass can be printed.
Patch by Bin Zeng!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157655 91177308-0d34-0410-b5e6-96231b3b80d8
The Hazard checker implements in-order contraints, or interlocked
resources. Ready instructions with hazards do not enter the available
queue and are not visible to other heuristics.
The major code change is the addition of SchedBoundary to encapsulate
the state at the top or bottom of the schedule, including both a
pending and available queue.
The scheduler now counts cycles in sync with the hazard checker. These
are minimum cycle counts based on known hazards.
Targets with no itinerary (x86_64) currently remain at cycle 0. To fix
this, we need to provide some maximum issue width for all targets. We
also need to add the concept of expected latency vs. minimum latency.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157427 91177308-0d34-0410-b5e6-96231b3b80d8
This helps compile time when the greedy register allocator splits live
ranges in giant functions. Without the bias, we would try to grow
regions through the giant edge bundles, usually to find out that the
region became too big and expensive.
If a live range has many uses in blocks near the giant bundle, the small
negative bias doesn't make a big difference, and we still consider
regions including the giant edge bundle.
Giant edge bundles are usually connected to landing pads or indirect
branches.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157174 91177308-0d34-0410-b5e6-96231b3b80d8
This class is meant to be the primary interface for examining a live
range in the vicinity on a given instruction. It avoids all the messy
dealings with iterators and early clobbers.
This is a more abstract interface to live ranges, hiding the
implementation as a vector of segments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157141 91177308-0d34-0410-b5e6-96231b3b80d8
The TargetPassManager's default constructor wants to initialize the PassManager
to 'null'. But it's illegal to bind a null reference to a null l-value. Make the
ivar a pointer instead.
PR12468
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155902 91177308-0d34-0410-b5e6-96231b3b80d8
The DAG builder is a convenient place to do it. Hopefully this is more
efficient than a separate traversal over the same region.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155456 91177308-0d34-0410-b5e6-96231b3b80d8
It set NumLowBitAvailable = 3 which may not be true on all platforms. We only
ever use 2 bits (the default) so this assumption can be safely removed
Should fix PR12612.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155288 91177308-0d34-0410-b5e6-96231b3b80d8
Now that multiple DAGUpdateListeners can be active at the same time,
ISelPosition can become a local variable in DoInstructionSelection.
We simply register an ISelUpdater with CurDAG while ISelPosition exists.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155249 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of passing listener pointers to RAUW, let SelectionDAG itself
keep a linked list of interested listeners.
This makes it possible to have multiple listeners active at once, like
RAUWUpdateListener was already doing. It also makes it possible to
register listeners up the call stack without controlling all RAUW calls
below.
DAGUpdateListener uses an RAII pattern to add itself to the SelectionDAG
list of active listeners.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155248 91177308-0d34-0410-b5e6-96231b3b80d8
This nicely handles the most common case of virtual register sets, but
also handles anticipated cases where we will map pointers to IDs.
The goal is not to develop a completely generic SparseSet
template. Instead we want to handle the expected uses within llvm
without any template antics in the client code. I'm adding a bit of
template nastiness here, and some assumption about expected usage in
order to make the client code very clean.
The expected common uses cases I'm designing for:
- integer keys that need to be reindexed, and may map to additional
data
- densely numbered objects where we want pointer keys because no
number->object map exists.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155227 91177308-0d34-0410-b5e6-96231b3b80d8
commits have had several major issues pointed out in review, and those
issues are not being addressed in a timely fashion. Furthermore, this
was all committed leading up to the v3.1 branch, and we don't need piles
of code with outstanding issues in the branch.
It is possible that not all of these commits were necessary to revert to
get us back to a green state, but I'm going to let the Hexagon
maintainer sort that out. They can recommit, in order, after addressing
the feedback.
Reverted commits, with some notes:
Primary commit r154616: HexagonPacketizer
- There are lots of review comments here. This is the primary reason
for reverting. In particular, it introduced large amount of warnings
due to a bad construct in tablegen.
- Follow-up commits that should be folded back into this when
reposting:
- r154622: CMake fixes
- r154660: Fix numerous build warnings in release builds.
- Please don't resubmit this until the three commits above are
included, and the issues in review addressed.
Primary commit r154695: Pass to replace transfer/copy ...
- Reverted to minimize merge conflicts. I'm not aware of specific
issues with this patch.
Primary commit r154703: New Value Jump.
- Primarily reverted due to merge conflicts.
- Follow-up commits that should be folded back into this when
reposting:
- r154703: Remove iostream usage
- r154758: Fix CMake builds
- r154759: Fix build warnings in release builds
- Please incorporate these fixes and and review feedback before
resubmitting.
Primary commit r154829: Hexagon V5 (floating point) support.
- Primarily reverted due to merge conflicts.
- Follow-up commits that should be folded back into this when
reposting:
- r154841: Remove unused variable (fixing build warnings)
There are also accompanying Clang commits that will be reverted for
consistency.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155047 91177308-0d34-0410-b5e6-96231b3b80d8
for the life of me remember why I wrote it this way, but I can't see any good
reason for it now. This patch replaces the custom linked list with an ilist.
This change should preserve the existing numberings exactly, so no generated code
should change (if it does, file a bug!).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154904 91177308-0d34-0410-b5e6-96231b3b80d8
This is a special flag for targets that really want their block
terminators in the DAG. The default scheduler cannot handle this
correctly, so it becomes the specialized scheduler's responsibility to
schedule terminators.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154712 91177308-0d34-0410-b5e6-96231b3b80d8
legalizer always use the DAG entry node. This is wrong when the libcall is
emitted as a tail call since it effectively folds the return node. If
the return node's input chain is not the entry (i.e. call, load, or store)
use that as the tail call input chain.
PR12419
rdar://9770785
rdar://11195178
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154370 91177308-0d34-0410-b5e6-96231b3b80d8
This allows us to keep passing reduced masks to SimplifyDemandedBits, but
know about all the bits if SimplifyDemandedBits fails. This allows instcombine
to simplify cases like the one in the included testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154011 91177308-0d34-0410-b5e6-96231b3b80d8
The colorability heuristic should count these as denied registers.
No test case - this exposed a bug on an out-of-tree target.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153958 91177308-0d34-0410-b5e6-96231b3b80d8
This is the CodeGen equivalent of r153747. I tested that there is not noticeable
performance difference with any combination of -O0/-O2 /-g when compiling
gcc as a single compilation unit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153817 91177308-0d34-0410-b5e6-96231b3b80d8
Some targets still mess up the liveness information, but that isn't
verified after MRI->invalidateLiveness().
The verifier can still check other useful things like register classes
and CFG, so it should be enabled after all passes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153615 91177308-0d34-0410-b5e6-96231b3b80d8
Late optimization passes like branch folding and tail duplication can
transform the machine code in a way that makes it expensive to keep the
register liveness information up to date. There is a fuzzy line between
register allocation and late scheduling where the liveness information
degrades.
The MRI::tracksLiveness() flag makes the line clear: While true,
liveness information is accurate, and can be used for register
scavenging. Once the flag is false, liveness information is not
accurate, and can only be used as a hint.
Late passes generally don't need the liveness information, but they will
sometimes use the register scavenger to help update it. The scavenger
enforces strict correctness, and we have to spend a lot of code to
update register liveness that may never be used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153511 91177308-0d34-0410-b5e6-96231b3b80d8