load and store reference same memory location, the memory location
is represented by getelementptr with two uses (load and store) and
the getelementptr's base is alloca with single use. At this point,
instructions from alloca to store can be removed.
(this pattern is generated when bitfield is accessed.)
For example,
%u = alloca %struct.test, align 4 ; [#uses=1]
%0 = getelementptr inbounds %struct.test* %u, i32 0, i32 0;[#uses=2]
%1 = load i8* %0, align 4 ; [#uses=1]
%2 = and i8 %1, -16 ; [#uses=1]
%3 = or i8 %2, 5 ; [#uses=1]
store i8 %3, i8* %0, align 4
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127565 91177308-0d34-0410-b5e6-96231b3b80d8
This happens a lot in clang-compiled C++ code because it adds overflow checks to operator new[]:
unsigned *foo(unsigned n) { return new unsigned[n]; }
We can optimize away the overflow check on 64 bit targets because (uint64_t)n*4 cannot overflow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127418 91177308-0d34-0410-b5e6-96231b3b80d8
the value splatted into every element. Extend this to getTrue and getFalse which
by providing new overloads that take Types that are either i1 or <N x i1>. Use
it in InstCombine to add vector support to some code, fixing PR8469!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127116 91177308-0d34-0410-b5e6-96231b3b80d8
possible. This goes into instcombine and instsimplify because instsimplify
doesn't need to check hasOneUse since it returns (almost exclusively) constants.
This fixes PR9343 #4#5 and #8!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127064 91177308-0d34-0410-b5e6-96231b3b80d8
intersection of the LHS and RHS ConstantRanges and return "false" when
the range is empty.
This simplifies some code and catches some extra cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126744 91177308-0d34-0410-b5e6-96231b3b80d8
function prototype into a call to a varargs prototype. We do
allow the xform if we have a definition, but otherwise we don't
want to risk that we're changing the abi in a subtle way. On
X86-64, for example, varargs require passing stuff in %al.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126363 91177308-0d34-0410-b5e6-96231b3b80d8
We usually catch this kind of optimization through InstSimplify's distributive
magic, but or doesn't distribute over xor in general.
"A | ~(A | B) -> A | ~B" hits 24 times on gcc.c.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126081 91177308-0d34-0410-b5e6-96231b3b80d8
variations (some of these were already present so I unified the code). Spotted by my
auto-simplifier as occurring a lot.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125734 91177308-0d34-0410-b5e6-96231b3b80d8
unsigned overflow (e.g. due to a negative array index), but
the scales on array size multiplications are known to not
sign wrap.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125409 91177308-0d34-0410-b5e6-96231b3b80d8
gep to explicit addressing, we know that none of the intermediate
computation overflows.
This could use review: it seems that the shifts certainly wouldn't
overflow, but could the intermediate adds overflow if there is a
negative index?
Previously the testcase would instcombine to:
define i1 @test(i64 %i) {
%p1.idx.mask = and i64 %i, 4611686018427387903
%cmp = icmp eq i64 %p1.idx.mask, 1000
ret i1 %cmp
}
now we get:
define i1 @test(i64 %i) {
%cmp = icmp eq i64 %i, 1000
ret i1 %cmp
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125271 91177308-0d34-0410-b5e6-96231b3b80d8
exact/nsw/nuw shifts and have instcombine infer them when it can prove
that the relevant properties are true for a given shift without them.
Also, a variety of refactoring to use the new patternmatch logic thrown
in for good luck. I believe that this takes care of a bunch of related
code quality issues attached to PR8862.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125267 91177308-0d34-0410-b5e6-96231b3b80d8
optimizations to be much more aggressive in the face of
exact/nsw/nuw div and shifts. For example, these (which
are the same except the first is 'exact' sdiv:
define i1 @sdiv_icmp4_exact(i64 %X) nounwind {
%A = sdiv exact i64 %X, -5 ; X/-5 == 0 --> x == 0
%B = icmp eq i64 %A, 0
ret i1 %B
}
define i1 @sdiv_icmp4(i64 %X) nounwind {
%A = sdiv i64 %X, -5 ; X/-5 == 0 --> x == 0
%B = icmp eq i64 %A, 0
ret i1 %B
}
compile down to:
define i1 @sdiv_icmp4_exact(i64 %X) nounwind {
%1 = icmp eq i64 %X, 0
ret i1 %1
}
define i1 @sdiv_icmp4(i64 %X) nounwind {
%X.off = add i64 %X, 4
%1 = icmp ult i64 %X.off, 9
ret i1 %1
}
This happens when you do something like:
(ptr1-ptr2) == 42
where the pointers are pointers to non-unit types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125266 91177308-0d34-0410-b5e6-96231b3b80d8
and generally tidying things up. Only very trivial functionality changes
like now doing (-1 - A) -> (~A) for vectors too.
InstCombineAddSub.cpp | 296 +++++++++++++++++++++-----------------------------
1 file changed, 126 insertions(+), 170 deletions(-)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125264 91177308-0d34-0410-b5e6-96231b3b80d8
versions of creation functions. Eventually, the "insertion point" versions
of these should just be removed, we do have IRBuilder afterall.
Do a massive rewrite of much of pattern match. It is now shorter and less
redundant and has several other widgets I will be using in other patches.
Among other changes, m_Div is renamed to m_IDiv (since it only matches
integer divides) and m_Shift is gone (it used to match all binops!!) and
we now have m_LogicalShift for the one client to use.
Enhance IRBuilder to have "isExact" arguments to things like CreateUDiv
and reduce redundancy within IRbuilder by having these methods chain to
each other more instead of duplicating code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125194 91177308-0d34-0410-b5e6-96231b3b80d8