The default guess uses i32. This needs an address space argument
to really do the right thing in all cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214104 91177308-0d34-0410-b5e6-96231b3b80d8
use is deprecated in favour of llvm_map_components_to_libnames()
Although message(DEPRECATION "msg") would probably be a better fit this
does nothing if CMAKE_ERROR_DEPRECATED and CMAKE_WARNING_DEPRECATED are
both off, which is the default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214078 91177308-0d34-0410-b5e6-96231b3b80d8
While LLVM now supports both ELFv1 and ELFv2 ABIs, their use is currently
hard-coded via the target triple: powerpc64-linux is always ELFv1, while
powerpc64le-linux is always ELFv2.
These are of course the most common scenarios, but in principle it is
possible to support the ELFv2 ABI on big-endian or the ELFv1 ABI on
little-endian systems (and GCC does support that), and there are some
special use cases for that (e.g. certain Linux kernel versions could
only be built using ELFv1 on LE).
This patch implements the LLVM side of supporting this. As precedent
on other platforms suggests, ABI options are passed to the back-end as
features. Thus, this patch implements two features "elfv1" and "elfv2"
that select the desired ABI if present. (If not, the LLVM uses the
same default rules as now.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214072 91177308-0d34-0410-b5e6-96231b3b80d8
These are only used when the 'ld' in the path is gold and the plugin has
been built, but it is already a start to make sure we don't regress features
that cannot be tested with llvm-lto.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214058 91177308-0d34-0410-b5e6-96231b3b80d8
The subtarget information is the ultimate source of truth for the feature set
that is enabled at this point. We would previously not propagate the feature
information to the subtarget. While this worked for the most part (features
would be enabled/disabled as requested), if another operation that changed the
feature bits was encountered (such as a mode switch via a .arm or .thumb
directive), we would end up resetting the behaviour of the architectural
extensions.
Handling this properly requires a slightly more complicated handling. We need
to check if the feature is now being toggled. If so, only then do we toggle the
features. In return, we no longer have to calculate the feature bits ourselves.
The test changes are mostly to the diagnosis, which is now more uniform (a nice
side effect!). Add an additional test to ensure that we handle this case
properly.
Thanks to Nico Weber for alerting me to this issue!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214057 91177308-0d34-0410-b5e6-96231b3b80d8
Convert a loop to use range based iteration. Rename structure members to help
naming, and make structure definition anonymous. NFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214056 91177308-0d34-0410-b5e6-96231b3b80d8
Rename to allowsMisalignedMemoryAccess.
On R600, 8 and 16 byte accesses are mostly OK with 4-byte alignment,
and don't need to be split into multiple accesses. Vector loads with
an alignment of the element type are not uncommon in OpenCL code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214055 91177308-0d34-0410-b5e6-96231b3b80d8
'J' represents a negative number suitable for an add/sub alias
instruction, but while preparing it to become an int64_t we were
mangling the sign extension. So "i32 -1" became 0xffffffffLL, for
example.
Should fix one half of PR20456.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214052 91177308-0d34-0410-b5e6-96231b3b80d8
instructions in the legalized DAG, and leverage it to combine long
sequences of instructions to PSHUFB.
Eventually, the other x86-instruction-specific shuffle combines will
probably all be driven out of this routine. But the real motivation is
to detect after we have fully legalized and optimized a shuffle to the
minimal number of x86 instructions whether it is profitable to replace
the chain with a fully generic PSHUFB instruction even though doing so
requires either a load from a constant pool or tying up a register with
the mask.
While the Intel manuals claim it should be used when it replaces 5 or
more instructions (!!!!) my experience is that it is actually very fast
on modern chips, and so I've gon with a much more aggressive model of
replacing any sequence of 3 or more instructions.
I've also taught it to do some basic canonicalization to special-purpose
instructions which have smaller encodings than their generic
counterparts.
There are still quite a few FIXMEs here, and I've not yet implemented
support for lowering blends with PSHUFB (where its power really shines
due to being able to zero out lanes), but this starts implementing real
PSHUFB support even when using the new, fancy shuffle lowering. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214042 91177308-0d34-0410-b5e6-96231b3b80d8
checking whether the ArrayRef is equal to an explicit list of arguments.
This is particularly easy to implement even without variadic templates
because ArrayRef happens to be homogeneously typed. As a consequence we
can use a "clever" wrapper type and default arguments to capture in
a single method many arguments as well as *how many* arguments the user
specified.
Thanks to Dave Blaikie for helping me pull together this little helper.
Suggestions for how to improve or generalize it are of course welcome.
I'll be using it immediately in my follow-up patch. =D
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214041 91177308-0d34-0410-b5e6-96231b3b80d8
There was no check prefix for the instruction lines.
Match what is emitted though, although I'm pretty sure it is
incorrect.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214035 91177308-0d34-0410-b5e6-96231b3b80d8
over each node in the worklist prior to combining.
This allows the combiner to produce new nodes which need to go back
through legalization. This is particularly useful when generating
operands to target specific nodes in a post-legalize DAG combine where
the operands are significantly easier to express as pre-legalized
operations. My immediate use case will be PSHUFB formation where we need
to build a constant shuffle mask with a build_vector node.
This also refactors the relevant functionality in the legalizer to
support this, and updates relevant tests. I've spoken to the R600 folks
and these changes look like improvements to them. The avx512 change
needs to be investigated, I suspect there is a disagreement between the
legalizer and the DAG combiner there, but it seems a minor issue so
leaving it to be re-evaluated after this patch.
Differential Revision: http://reviews.llvm.org/D4564
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214020 91177308-0d34-0410-b5e6-96231b3b80d8
The tale starts with r212808 which attempted to fix inversion of the low
and high bits when lowering MUL_LOHI. Sadly, that commit did not include
any positive test cases, and just removed some operations from a test
case where the actual logic being changed isn't fully visible from the
test.
What this commit did was two things. First, it reversed the low and high
results in the formation of the MERGE_VALUES node for the multiple
results. This is entirely correct.
Second it changed the shuffles for extracting the low and high
components from the i64 results of the multiplies to extract them
assuming a big-endian-style encoding of the multiply results. This
second change is wrong. There is no big-endian encoding in x86, the
results of the multiplies are normal v2i64s: when cast to v4i32, the low
i32s are at offsets 0 and 2, and the high i32s are at offsets 1 and 3.
However, the first change wasn't enough to actually fix the bug, which
is (I assume) why the second change was also made. There was another bug
in the MERGE_VALUES formation: we weren't using a VTList, and so were
getting a single result node! When grabbing the *second* result from the
node, we got... well.. colud be anything. I think this *appeared* to
invert things, but had to be causing other problems as well.
Fortunately, I fixed the MERGE_VALUES issue in r213931, so we should
have been fine, right? NOOOPE! Because the core bug was never addressed,
the test in vector-idiv failed when I fixed the MERGE_VALUES node.
Because there are essentially no docs for this node, I had to guess at
how to fix it and tried swapping the operands, restoring the order of
the original code before r212808. While this "fixed" the test case (in
that we produced the write instructions) we were still extracting the
wrong elements of the i64s, and thus PR20355 was still broken.
This commit essentially reverts the big-endian-style extraction part of
r212808 and goes back to the original masks which were correct. Now that
the MERGE_VALUES node formation is also correct, everything works. I've
also included a more detailed test from PR20355 to make sure this stays
fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214011 91177308-0d34-0410-b5e6-96231b3b80d8
in r214007 and then reverted when I backed that (very misguided) patch
out. This recovers the test case cleanup which was good.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214010 91177308-0d34-0410-b5e6-96231b3b80d8
The clever way to implement signed multiplication with unsigned *is
already implemented* and tested and working correctly. The bug is
somewhere else. Re-investigating.
This will teach me to not scroll far enough to read the code that did
what I thought needed to be done.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214009 91177308-0d34-0410-b5e6-96231b3b80d8
signed multiplication is requested. While there is not a difference in
the *low* half of the result, the *high* half (used specifically to
implement the signed division by these constants) certainly is used. The
test case I've nuked was actively asserting wrong code.
There is a delightful solution to doing signed multiplication even when
we don't have it that Richard Smith has crafted, but I'll add the
machinery back and implement that in a follow-up patch. This at least
restores correctness.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214007 91177308-0d34-0410-b5e6-96231b3b80d8
instructions which happen to have a constant mask.
Currently, this only handles a very narrow set of cases, but those
happen to be the cases that I care about for testing shuffles sanely.
This is a bit trickier than other shuffle instructions because we're
decoding constants out of the constant pool. The current MC layer makes
it completely impossible to inspect a constant pool entry, so we have to
do it at the MI level and attach the comment to the streamer on its way
out. So no joy for disassembling, but it does make test cases and asm
dumps *much* nicer.
Sorry for no test cases, but it didn't really seem that valuable to go
trolling through existing old test cases and updating them. I'll have
lots of testing of this in the upcoming patch for SSSE3 emission in the
new vector shuffle lowering code paths.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213986 91177308-0d34-0410-b5e6-96231b3b80d8
This patch removes the empty coverage mapping regions.
Those regions were produced by clang's old mapping region generation
algorithm, but the new algorithm doesn't generate them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213981 91177308-0d34-0410-b5e6-96231b3b80d8
This is the first commit in a series that add an @llvm.assume intrinsic which
can be used to provide the optimizer with a condition it may assume to be true
(when the control flow would hit the intrinsic call). Some basic properties are added here:
- llvm.invariant(true) is dead.
- llvm.invariant(false) is unreachable (this directly corresponds to the
documented behavior of MSVC's __assume(0)), so is llvm.invariant(undef).
The intrinsic is tagged as writing arbitrarily, in order to maintain control
dependencies. BasicAA has been updated, however, to return NoModRef for any
particular location-based query so that we don't unnecessarily block code
motion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213973 91177308-0d34-0410-b5e6-96231b3b80d8
address of the stack guard was being spilled to the stack.
Previously the address of the stack guard would get spilled to the stack if it
was impossible to keep it in a register. This patch introduces a new target
independent node and pseudo instruction which gets expanded post-RA to a
sequence of instructions that load the stack guard value. Register allocator
can now just remat the value when it can't keep it in a register.
<rdar://problem/12475629>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213967 91177308-0d34-0410-b5e6-96231b3b80d8