memcpy to match the alignment of the destination. It isn't necessary
for making loads and stores handled like the SSE loadu/storeu
intrinsics, and it was causing a performance regression in
MultiSource/Applications/JM/lencod.
The problem appears to have been a memcpy that copies from some
highly aligned array into an alloca; the alloca was then being
assigned a large alignment, which required codegen to perform
dynamic stack-pointer re-alignment, which forced the enclosing
function to have a frame pointer, which led to increased spilling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65289 91177308-0d34-0410-b5e6-96231b3b80d8
as legality. Make load sinking and gep sinking more careful: we only
do it when it won't pessimize loads from the stack. This has the added
benefit of not producing code that is unanalyzable to SROA.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65209 91177308-0d34-0410-b5e6-96231b3b80d8
addresses, part 1. This fixes an obvious logic bug. Previously if the only
in-loop use is a PHI, it would return AllUsesAreAddresses as true.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65178 91177308-0d34-0410-b5e6-96231b3b80d8
Currently this pass will delete the variable declaration info,
and keep the line number info. But the kept line number info is not updated,
and some is redundant or not correct, this patch just updates those info.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65123 91177308-0d34-0410-b5e6-96231b3b80d8
reduction of address calculations down to basic pointer arithmetic.
This is currently off by default, as it needs a few other features
before it becomes generally useful. And even when enabled, full
strength reduction is only performed when it doesn't increase
register pressure, and when several other conditions are true.
This also factors out a bunch of exisiting LSR code out of
StrengthReduceStridedIVUsers into separate functions, and tidies
up IV insertion. This actually decreases register pressure even
in non-superhero mode. The change in iv-users-in-other-loops.ll
is an example of this; there are two more adds because there are
two fewer leas, and there is less spilling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65108 91177308-0d34-0410-b5e6-96231b3b80d8
here. Since we only do the transform if there is
one use, strip off any such users in the hope of
making the transform fire more often.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64926 91177308-0d34-0410-b5e6-96231b3b80d8
trip count value when the original loop iteration condition is
signed and the canonical induction variable won't undergo signed
overflow. This isn't required for correctness; it just preserves
more information about original loop iteration values.
Add a getTruncateOrSignExtend method to ScalarEvolution,
following getTruncateOrZeroExtend.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64918 91177308-0d34-0410-b5e6-96231b3b80d8
are multiple IV's in a loop, some of them may under go signed
or unsigned wrapping even if the IV that's used in the loop
exit condition doesn't. Restrict sign-extension-elimination
and zero-extension-elimination to only those that operate on
the original loop-controlling IV.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64866 91177308-0d34-0410-b5e6-96231b3b80d8
modified in a way that may effect the trip count calculation. Change
IndVars to use this method when it rewrites pointer or floating-point
induction variables instead of using a doInitialization method to
sneak these changes in before ScalarEvolution has a chance to see
the loop. This eliminates the need for LoopPass to depend on
ScalarEvolution.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64810 91177308-0d34-0410-b5e6-96231b3b80d8
eliminate all the extensions and all but the one required truncate
from the testcase, but the or/and/shift stuff still isn't zapped.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64809 91177308-0d34-0410-b5e6-96231b3b80d8
Enhance instcombine to use the preferred field of
GetOrEnforceKnownAlignment in more cases, so that regular IR operations are
optimized in the same way that the intrinsics currently are.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64623 91177308-0d34-0410-b5e6-96231b3b80d8
when I was looking at functions used by python.
Highlights include, better largefile support (64-bit file sizes on 32-bit
systems), fputs string is nocapture, popen/pclose added (popen being noalias
return), modf and frexp and friends. Also added some missing 'break' statements
and combined identical sections.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64615 91177308-0d34-0410-b5e6-96231b3b80d8
alias can be morphed into the target. Implement this
transform, and fix a crash in the existing transform at
the same time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64583 91177308-0d34-0410-b5e6-96231b3b80d8
- Test for signed and unsigned wrapping conditions, instead of just
testing for non-negative induction ranges.
- Handle loops with GT comparisons, in addition to LT comparisons.
- Support more cases of induction variables that don't start at 0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64532 91177308-0d34-0410-b5e6-96231b3b80d8