This is another (final?) stab at making us able to parse our own asm output
on Windows.
Symbols on Windows often contain @'s and ?'s in their names. Our asm parser
didn't like this. ?'s were not allowed, and @'s were intepreted as trying to
reference PLT/GOT/etc.
We can't just add quotes around the bad names, since e.g. for MinGW, we use gas
to assemble, and it doesn't like quotes in some places (notably in .def
directives).
This commit makes us allow ?'s in symbol names, and @'s in symbol names for MS
assembly.
Differential Revision: http://llvm-reviews.chandlerc.com/D1978
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193000 91177308-0d34-0410-b5e6-96231b3b80d8
This patch fixes a small mistake in MCDataAtom::addData() where it doesn't ever
call remap():
- if (Data.size() > Begin - End - 1)
+ if (Data.size() > End + 1 - Begin)
remap(Begin, End + 1);
This is currently not visible because of another bug is the disassembler, so
the patch includes a unit test.
Patch by Stephen Checkoway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192823 91177308-0d34-0410-b5e6-96231b3b80d8
This can happen when processing command line arguments, which
are often stored as std::string's and later turned into
StringRef's via std::string::data(). Unfortunately this
is not guaranteed to return a null-terminated string
until C++11, causing breakage on platforms that don't do this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192558 91177308-0d34-0410-b5e6-96231b3b80d8
This patch fixes an old FIXME by creating a MCTargetStreamer interface
and moving the target specific functions for ARM, Mips and PPC to it.
The ARM streamer is still declared in a common place because it is
used from lib/CodeGen/ARMException.cpp, but the Mips and PPC are
completely hidden in the corresponding Target directories.
I will send an email to llvmdev with instructions on how to use this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192181 91177308-0d34-0410-b5e6-96231b3b80d8
When MC was first added, targets could use hasRawTextSupport to keep features
working before they were added to the MC interface.
The design goal of MC is to provide an uniform api for printing assembly and
object files. Short of relaxations and other corner cases, a object file is
just another representation of the assembly.
It was never the intention that targets would keep doing things like
if (hasRawTextSupport())
Set flags in one way.
else
Set flags in another way.
When they do that they create two code paths and the object file is no longer
just another representation of the assembly. This also then requires testing
with llc -filetype=obj, which is extremelly brittle.
This patch removes some of these hacks by replacing them with smaller ones.
The ARM flag setting is trivial, so I just moved it to the constructor. For
Mips, the patch adds two temporary hack directives that allow the assembly
to represent the same things as the object file was already able to.
The hope is that the mips developers will replace the hack directives with
the same ones that gas uses and drop the -print-hack-directives flag.
I will also try to implement a target streamer interface, so that we can
move this out of the common code.
In summary, for any new work, two rules of the thumb are
* Don't use "llc -filetype=obj" in tests.
* Don't add calls to hasRawTextSupport.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192035 91177308-0d34-0410-b5e6-96231b3b80d8
This patch handles LLVM standalone assembler (llvm-mc) ELF flag setting based on input file
directive processing.
Mips assembly requires processing inline directives that directly and
indirectly affect the output ELF header flags. This patch handles one
".abicalls".
To process these directives we are following the model the code generator
uses by storing state in a container as we go through processing and when
we detect the end of input file processing, AsmParser is notified and we
update the ELF header flags through a MipsELFStreamer method with a call from
MCTargetAsmParser::emitEndOfAsmFile(MCStreamer &OutStreamer).
This patch will allow other targets the same functionality.
Jack
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191982 91177308-0d34-0410-b5e6-96231b3b80d8
Ideally, the machinel model is added at the time the instructions are
defined. But many instructions in X86InstrSSE.td still need a model.
Without this workaround the scheduler asserts because x86 already has
itinerary classes for these instructions, indicating they should be
modeled by the scheduler. Since we use the new machine model for other
instructions, it expects a new machine model for these too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191391 91177308-0d34-0410-b5e6-96231b3b80d8
The binutils assembler supports a mode called DOLLAR_DOT which treats
the dollar sign token as a reference to the current program counter if
the dollar sign doesn't precede a constant or identifier.
This commit adds a new MCAsmInfo flag stating whether or not a given
target supports this interpretation of the dollar sign token; by
default, this flag is not enabled.
Further, enable this flag for PPC. The system assembler for AIX and
binutils both support using the dollar sign in this manner.
This fixes PR17353.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191368 91177308-0d34-0410-b5e6-96231b3b80d8
The underlying type of all plain enums in MSVC is 'int', even if the
enumerator contains large 32-bit unsigned values or values greater than
UINT_MAX. The only way to get a large or unsigned enum type is to
request it explicitly with the C++11 strong enum types feature.
However, since LLVM isn't C++11 yet, I had to add a conditional
LLVM_ENUM_INT_TYPE to Compiler.h to control its usage.
The motivating true positive for this change is compiling PointerIntPair
with MSVC for win64. The PointerIntMask value is supposed to be pointer
sized value of all ones with some low zeros. Instead, it's truncated to
32-bits! We are only saved later because it is sign extended back in
the AND with int64_t, and we happen to want all ones.
This silences lots of -Wmicrosoft warnings during a clang self-host
targeting Windows.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191241 91177308-0d34-0410-b5e6-96231b3b80d8
Use the DIVariable::isIndirect() flag set by the frontend instead of
guessing whether to set the machine location's indirection bit.
Paired commit with CFE.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190961 91177308-0d34-0410-b5e6-96231b3b80d8
The 'Deprecated' class allows you to specify a SubtargetFeature that the
instruction is deprecated on.
The 'ComplexDeprecationPredicate' class allows you to define a custom
predicate that is called to check for deprecation.
For example:
ComplexDeprecationPredicate<"MCR">
would mean you would have to define the following function:
bool getMCRDeprecationInfo(MCInst &MI, MCSubtargetInfo &STI,
std::string &Info)
Which returns 'false' for not deprecated, and 'true' for deprecated
and store the warning message in 'Info'.
The MCTargetAsmParser constructor was chaned to take an extra argument of
the MCInstrInfo class, so out-of-tree targets will need to be changed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190598 91177308-0d34-0410-b5e6-96231b3b80d8
There are more than one paths to where the frame information is emitted. Place
the call to generateCompactUnwindEncodings() into the method which outputs the
frame information, thus ensuring that the encoding is there for every path. This
involved threading the MCAsmBackend object through to this method.
<rdar://problem/13623355>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190335 91177308-0d34-0410-b5e6-96231b3b80d8
We used to generate the compact unwind encoding from the machine
instructions. However, this had the problem that if the user used `-save-temps'
or compiled their hand-written `.s' file (with CFI directives), we wouldn't
generate the compact unwind encoding.
Move the algorithm that generates the compact unwind encoding into the
MCAsmBackend. This way we can generate the encoding whether the code is from a
`.ll' or `.s' file.
<rdar://problem/13623355>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190290 91177308-0d34-0410-b5e6-96231b3b80d8
\param should be used to describe individual parameters. Use a command like \a or \c for visual enhancements.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189905 91177308-0d34-0410-b5e6-96231b3b80d8
first. Use this to turn the PPC modifiers into PPC specific expressions,
allowing them to work on constants.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189400 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commits r189319 and r189315. r189315 broke some tests on what I
believe are big-endian platforms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189321 91177308-0d34-0410-b5e6-96231b3b80d8
Like yaml ObjectFiles, this will be very useful for testing the MC CFG
implementation (mostly MCObjectDisassembler), by matching the output
with YAML, and for potential users of the MC CFG, by using it as an input.
There isn't much to the actual format, it is just a serialization of the
MCModule class. Of note:
- Basic block references (pred/succ, ..) are represented by the BB's
start address.
- Just as in the MC CFG, instructions are MCInsts with a size.
- Operands have a prefix representing the type (only register and
immediate supported here).
- Instruction opcodes are represented by their names; enum values aren't
stable, enum names mostly are: usually, a change to a name would need
lots of changes in the backend anyway.
Same with registers.
All in all, an example is better than 1000 words, here goes:
A simple binary:
Disassembly of section __TEXT,__text:
_main:
100000f9c: 48 8b 46 08 movq 8(%rsi), %rax
100000fa0: 0f be 00 movsbl (%rax), %eax
100000fa3: 3b 04 25 48 00 00 00 cmpl 72, %eax
100000faa: 0f 8c 07 00 00 00 jl 7 <.Lend>
100000fb0: 2b 04 25 48 00 00 00 subl 72, %eax
.Lend:
100000fb7: c3 ret
And the (pretty verbose) generated YAML:
---
Atoms:
- StartAddress: 0x0000000100000F9C
Size: 20
Type: Text
Content:
- Inst: MOV64rm
Size: 4
Ops: [ RRAX, RRSI, I1, R, I8, R ]
- Inst: MOVSX32rm8
Size: 3
Ops: [ REAX, RRAX, I1, R, I0, R ]
- Inst: CMP32rm
Size: 7
Ops: [ REAX, R, I1, R, I72, R ]
- Inst: JL_4
Size: 6
Ops: [ I7 ]
- StartAddress: 0x0000000100000FB0
Size: 7
Type: Text
Content:
- Inst: SUB32rm
Size: 7
Ops: [ REAX, REAX, R, I1, R, I72, R ]
- StartAddress: 0x0000000100000FB7
Size: 1
Type: Text
Content:
- Inst: RET
Size: 1
Ops: [ ]
Functions:
- Name: __text
BasicBlocks:
- Address: 0x0000000100000F9C
Preds: [ ]
Succs: [ 0x0000000100000FB7, 0x0000000100000FB0 ]
<snip>
...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188890 91177308-0d34-0410-b5e6-96231b3b80d8
Supports:
- entrypoint, using LC_MAIN.
- static ctors/dtors, using __mod_{init,exit}_func
- translation between effective and object load address, using
dyld's VM address slide.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188886 91177308-0d34-0410-b5e6-96231b3b80d8
It can now disassemble code in situations where the effective load
address is different than the load address declared in the object file.
This happens for PIC, hence "dynamic".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188884 91177308-0d34-0410-b5e6-96231b3b80d8
When an MCTextAtom is split, all MCBasicBlocks backed by it are
automatically split, with a fallthrough between both blocks, and
the successors moved to the second block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188881 91177308-0d34-0410-b5e6-96231b3b80d8