the case of multiple edges from one block to another.
A simple example is a switch statement with multiple values to the same
destination. The definition of an edge is modified from a pair of blocks to
a pair of PredBlock and an index into the successors.
Also set the weight correctly when building SelectionDAG from LLVM IR,
especially when converting a Switch.
IntegersSubsetMapping is updated to calculate the weight for each cluster.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162572 91177308-0d34-0410-b5e6-96231b3b80d8
The previous fix only checked for simple cycles, use a set to catch longer
cycles too.
Drop the broken check from the ObjectSizeOffsetEvaluator. The BoundsChecking
pass doesn't have to deal with invalid IR like InstCombine does.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162120 91177308-0d34-0410-b5e6-96231b3b80d8
instruction to something absurdly high, while setting the probability of
branching to the 'unwind' destination to the bare minimum. This should set cause
the normal destination's invoke blocks to be moved closer to the invoke.
PR13612
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161944 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, if GetLocation reports that it did not find a valid pointer (this is the case for volatile load/stores),
we ignore the result. This patch adds code to handle the cases where we did not obtain a valid pointer.
rdar://11872864 PR12899
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161802 91177308-0d34-0410-b5e6-96231b3b80d8
We give a bonus for every argument because the argument setup is not needed
anymore when the function is inlined. With this patch we interpret byval
arguments as a compact representation of many arguments. The byval argument
setup is implemented in the backend as an inline memcpy, so to model the
cost as accurately as possible we take the number of pointer-sized elements
in the byval argument and give a bonus of 2 instructions for every one of
those. The bonus is capped at 8 elements, which is the number of stores
at which the x86 backend switches from an expanded inline memcpy to a real
memcpy. It would be better to use the real memcpy threshold from the backend,
but it's not available via TargetData.
This change brings the performance of c-ray in line with gcc 4.7. The included
test case tries to reproduce the c-ray problem to catch regressions for this
benchmark early, its performance is dominated by the inline decision of a
specific call.
This only has a small impact on most code, more on x86 and arm than on x86_64
due to the way the ABI works. When building LLVM for x86 it gives a small
inline cost boost to virtually any function using StringRef or STL allocators,
but only a 0.01% increase in overall binary size. The size of gcc compiled by
clang actually shrunk by a couple bytes with this patch applied, but not
significantly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161413 91177308-0d34-0410-b5e6-96231b3b80d8
instsimplify+inline strategy.
The crux of the problem is that instsimplify was reasonably relying on
an invariant that is true within any single function, but is no longer
true mid-inline the way we use it. This invariant is that an argument
pointer != a local (alloca) pointer.
The fix is really light weight though, and allows instsimplify to be
resiliant to these situations: when checking the relation ships to
function arguments, ensure that the argumets come from the same
function. If they come from different functions, then none of these
assumptions hold. All credit to Benjamin Kramer for coming up with this
clever solution to the problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161410 91177308-0d34-0410-b5e6-96231b3b80d8
original commit msg:
MemoryBuiltins: add support to determine the size of strdup'ed non-constant strings
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160751 91177308-0d34-0410-b5e6-96231b3b80d8
of an array element (rather than at the beginning of the element) and extended
into the next element, then the load from the second element was being handled
wrong due to incorrect updating of the notion of which byte to load next. This
fixes PR13442. Thanks to Chris Smowton for reporting the problem, analyzing it
and providing a fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160711 91177308-0d34-0410-b5e6-96231b3b80d8
Make sure we do not emit index computations with NSW flags so that we dont get an undef value if the GEP overflows
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160589 91177308-0d34-0410-b5e6-96231b3b80d8
the move of *Builder classes into the Core library.
No uses of this builder in Clang or DragonEgg I could find.
If there is a desire to have an IR-building-support library that
contains all of these builders, that can be easily added, but currently
it seems likely that these add no real overhead to VMCore.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160243 91177308-0d34-0410-b5e6-96231b3b80d8
All SCEV expressions used by LSR formulae must be safe to
expand. i.e. they may not contain UDiv unless we can prove nonzero
denominator.
Fixes PR11356: LSR hoists UDiv.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160205 91177308-0d34-0410-b5e6-96231b3b80d8
This allows SCEVExpander to run on the IV expressions.
This codifies an assumption made by LSR to complete the fix for
PR11356, but I haven't been able to generate a separate unit test for
this part. I'm adding it as an extra safety check.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160204 91177308-0d34-0410-b5e6-96231b3b80d8
- recognize C++ new(std::nothrow) friends
- ignore ExtractElement and ExtractValue instructions in size/offset analysis (all easy cases are probably folded away before we get here)
- also recognize realloc as noalias
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159356 91177308-0d34-0410-b5e6-96231b3b80d8
include/llvm/Analysis/DebugInfo.h to include/llvm/DebugInfo.h.
The reasoning is because the DebugInfo module is simply an interface to the
debug info MDNodes and has nothing to do with analysis.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159312 91177308-0d34-0410-b5e6-96231b3b80d8
It's not necessary for each DI class to have its own copy of `print' and
`dump'. Instead, just give DIDescriptor those methods and have it call the
appropriate debugging printing routine based on the type of the debug
information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159237 91177308-0d34-0410-b5e6-96231b3b80d8
The primary advantage is that loop optimizations will be applied in a
stable order. This helps debugging and unit test creation. It is also
a better overall implementation without pathologically bad performance
on deep functions.
On large functions (llvm-stress --size=200000 | opt -loops)
Before: 0.1263s
After: 0.0225s
On deep functions (after tweaking llvm-stress, thanks Nadav):
Before: 0.2281s
After: 0.0227s
See r158790 for more comments.
The loop tree is now consistently generated in forward order, but loop
passes are applied in reverse order over the program. If we have a
loop optimization that prefers forward order, that can easily be
achieved by adding a different type of LoopPassManager.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159183 91177308-0d34-0410-b5e6-96231b3b80d8