This intrinsic permits the emission of platform specific undefined sequences.
ARM has reserved the 0xde opcode which takes a single integer parameter (ignored
by the CPU). This permits the operating system to implement custom behaviour on
this trap. The llvm.arm.undefined intrinsic is meant to provide a means for
generating the target specific behaviour from the frontend. This is
particularly useful for Windows on ARM which has made use of a series of these
special opcodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209390 91177308-0d34-0410-b5e6-96231b3b80d8
Now that clang can be used as an assembler via the IAS, invalid assembler inputs
would cause the assertions to trigger. Although we cannot recover from the
errors here, nor provide caret diagnostics, attempt to handle them slightly more
gracefully by reporting a fatal error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209387 91177308-0d34-0410-b5e6-96231b3b80d8
This has to do with the trip count computation for loops with multiple
exits, which is quite subtle. Most passes just ask for a single trip
count number, so we must be conservative assuming any exit could be
taken. Normally, we rely on the "exact" trip count, which was
correctly given as "unknown". However, SCEV also gives a "max"
back-edge taken count. The loops max BE taken count is conservatively
a maximum over the max of each exit's non-exiting iterations
count. Note that some exit tests can be skipped so the max loop
back-edge taken count can actually exceed the max non-exiting
iterations for some exits. However, when we know the loop *latch*
cannot be skipped, we can directly use its max taken count
disregarding other exits. I previously took the minimum here without
checking whether the other exit could be skipped. The correct, and
simpler thing to do here is just to directly use the loop latch's max
non-exiting iterations as the loops max back-edge count.
In the problematic test case, the first loop exit had a max of zero
non-exiting iterations, but could be skipped. The loop latch was known
not to be skipped but had max of one non-exiting iteration. We
incorrectly claimed the loop back-edge could be taken zero times, when
it is actually taken one time.
Fixes Loop %for.body.i: <multiple exits> Unpredictable backedge-taken count.
Loop %for.body.i: max backedge-taken count is 1.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209358 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r208930, r208933, and r208975.
It seems not all fission consumers are ready to handle this behavior.
Reverting until tools are brought up to spec.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209338 91177308-0d34-0410-b5e6-96231b3b80d8
This corrects the emission of IMAGE_REL_ARM_MOV32T relocations. Previously, we
were avoiding the high portion of the relocation too early. If there was a
section-relative relocation with an offset greater than 16-bits (65535), you
would end up truncating the high order bits of the offset. Allow the current
relocation representation to flow through out the MC layer to the object writer.
Use the new ability to restrict recorded relocations to avoid emitting the
relocation into the final object.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209337 91177308-0d34-0410-b5e6-96231b3b80d8
Committed in r209178 then reverted in r209251 due to LTO breakage,
here's a proper fix for the case of the missing subprogram DIE. The DIEs
were there, just in other compile units. Using the SPMap we can find the
right compile unit to search for and produce cross-unit references to
describe this kind of inlining.
One existing test case needed to be updated because it had a function
that wasn't in the CU's subprogram list, so it didn't appear in the
SPMap.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209335 91177308-0d34-0410-b5e6-96231b3b80d8
ISD::VSELECT mask uses 1 to identify the first argument and 0 to identify the
second argument.
On the other hand, BLENDI uses 0 to identify the first argument and 1 to
identify the second argument.
Fix the generation of the blend mask to account for this difference.
The bug did not show up with r209043, because we were not checking for the
actual arguments of the blend instruction!
This commit also fixes the test cases.
Note: The same mask works for the BLENDr variant because the arguments are
swapped during instruction selection (see the BLENDXXrr patterns).
<rdar://problem/16975435>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209324 91177308-0d34-0410-b5e6-96231b3b80d8
Permit active macro expansions when terminating the assembler if there were
errors during the expansion. This would only trigger on invalid input when
built with assertions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209309 91177308-0d34-0410-b5e6-96231b3b80d8
The .drectve section should be marked as IMAGE_SCN_LNK_REMOVE. This matches what
the MSVC toolchain does and accurately reflects that this section should not be
emitted into the final binary. This section is merely information for the
linker, comprising of additional linker directives.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209273 91177308-0d34-0410-b5e6-96231b3b80d8
Although the previous code would construct a bundle and add the correct elements
to it, it would not finalise the bundle. This resulted in the InternalRead
markers not being added to the MachineOperands nor, more importantly, the
externally visible defs to the bundle itself. So, although the bundle was not
exposing the def, the generated code would be correct because there was no
optimisations being performed. When optimisations were enabled, the post
register allocator would kick in, and the hazard recognizer would reorder
operations around the load which would define the value being operated upon.
Rather than manually constructing the bundle, simply construct and finalise the
bundle via the finaliseBundle call after both MIs have been emitted. This
improves the code generation with optimisations where IMAGE_REL_ARM_MOV32T
relocations are emitted.
The changes to the other tests are the result of the bundle generation
preventing the scheduler from hoisting the moves across the loads. The net
effect of the generated code is equivalent, but, is much more identical to what
is actually being lowered.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209267 91177308-0d34-0410-b5e6-96231b3b80d8
for undefined symbols, so it matches what COFFObjectFile::getSymbolAddress
does. This allows llvm-nm to print spaces instead of 0’s for the value
of undefined symbols in Mach-O files.
To make this change other uses of MachOObjectFile::getSymbolAddress
are updated to handle when the Value is returned as UnknownAddressOrSize.
Which is needed to keep two of the ExecutionEngine tests working for example.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209253 91177308-0d34-0410-b5e6-96231b3b80d8
Povray and dealII currently assert with "Overran sorted position" in
AssignTopologicalOrder. The problem is that performPostLD1Combine can
introduce cycles.
Consider:
(insert_vector_elt (INSERT_SUBREG undef,
(load (add %vreg0, Constant<8>), undef), <= A
TargetConstant<2>),
(load %vreg0, undef), <= B
Constant<1>)
This is turned into a LD1LANEpost node. However the address in A is not a
valid user of the post-incremented address of B in LD1LANEpost.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209242 91177308-0d34-0410-b5e6-96231b3b80d8
make the functions to set them non-static.
Move and rename the llvm specific backend options to avoid conflicting
with the clang option.
Paired with a backend commit to update.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209238 91177308-0d34-0410-b5e6-96231b3b80d8
for undefined symbols. Allowing llvm-nm to print spaces instead of 0’s for
the value of undefined symbols in Mach-O files.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209235 91177308-0d34-0410-b5e6-96231b3b80d8
This commit introduces a canonical representation for the formulae.
Basically, as soon as a formula has more that one base register, the scaled
register field is used for one of them. The register put into the scaled
register is preferably a loop variant.
The commit refactors how the formulae are built in order to produce such
representation.
This yields a more accurate, but still perfectible, cost model.
<rdar://problem/16731508>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209230 91177308-0d34-0410-b5e6-96231b3b80d8
In refactoring DwarfUnit::isUnsignedDIType I restricted it to only work
on values with signedness (unsigned or signed), asserting on anything
else (which did uncover some bugs). But it turns out that we do need to
emit constants of signless data, such as pointer constants - only null
pointer constants are known to need this so far, but it's conceivable
that there might be non-null pointer constants at some point (hardcoded
address offsets for device drivers?).
This patch just uses 'unsigned' for signless data such as pointer
constants. Arguably we could use signless representations
(DW_FORM_dataN) instead, allowing a trinary result from isUnsignedDIType
(signed, unsigned, signless), but this seems reasonable for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209223 91177308-0d34-0410-b5e6-96231b3b80d8
The SplitIndexingFromLoad changes exposed a latent isel bug in the PowerPC64
backend. We matched an immediate offset with STWX8 even though it only
supports register offset.
The culprit is the complex-pattern predicate, SelectAddrIdx, which decides
that if the offset is not ISD::Constant it must be a register.
Many thanks to Bill Schmidt for testing this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209219 91177308-0d34-0410-b5e6-96231b3b80d8
After discussion with Zoran, we have decided to temporarily revert this commit.
It's causing some difficult to resolve conflicts and we are under time pressure
to deliver an initial MIPS64r6 compiler.
We will re-apply an equivalent patch once the time pressure has passed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209211 91177308-0d34-0410-b5e6-96231b3b80d8
When multiple aliases overlap, the correct string to print can often be
determined purely by considering the InstAlias declarations in some particular
order. This allows the user to specify that order manually when desired,
without resorting to hacking around with the default lexicographical order on
Record instantiation, which is error-prone and ugly.
I was also mistaken about "add w2, w3, w4" being the same as "add w2, w3, w4,
uxtw". That's only true if Rn is the stack pointer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209199 91177308-0d34-0410-b5e6-96231b3b80d8
This workaround (presumably for ancient GDB) doesn't appear to be
required (GDB 7.5 seems to tolerate function definition DIEs in
namespace scope just fine).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209189 91177308-0d34-0410-b5e6-96231b3b80d8
Since we visit the whole list of subprograms for each CU at module
start, this is clearly true - don't test for the case, just assert it.
A few old test cases seemed to have incomplete subprogram lists, but any
attempt to reproduce them shows full subprogram lists that even include
entities that have been completely inlined and the out of line
definition removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209178 91177308-0d34-0410-b5e6-96231b3b80d8
When I refactored this in r208636 I accidentally caused this to be added
multiple times to each abstract subprogram (not accounting for the
deduplicating effect of the InlinedSubprogramDIEs set).
This got better in r208798 when the abstract definitions got the
attribute added to them at construction time, but still had the
redundant copies introduced in r208636.
This commit removes those excess DW_AT_inlines and relies solely on the
insertion in r208798.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209166 91177308-0d34-0410-b5e6-96231b3b80d8