is not profitable in many cases because modern processors perform multiple stores
in parallel and merging stores prior to merging requires extra work. We handle two main cases:
1. Store of multiple consecutive constants:
q->a = 3;
q->4 = 5;
In this case we store a single legal wide integer.
2. Store of multiple consecutive loads:
int a = p->a;
int b = p->b;
q->a = a;
q->b = b;
In this case we load/store either ilegal vector registers or legal wide integer registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165125 91177308-0d34-0410-b5e6-96231b3b80d8
the add/sub case since in the case of multiplication you also have to check that
the operation in the larger type did not overflow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165017 91177308-0d34-0410-b5e6-96231b3b80d8
because moden processos can store multiple values in parallel, and preparing the consecutive store requires
some work. We only handle these cases:
1. Consecutive stores where the values and consecutive loads. For example:
int a = p->a;
int b = p->b;
q->a = a;
q->b = b;
2. Consecutive stores where the values are constants. Foe example:
q->a = 4;
q->b = 5;
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164910 91177308-0d34-0410-b5e6-96231b3b80d8
buildbots. Original commit message:
A DAGCombine optimization for merging consecutive stores. This optimization is not profitable in many cases
because moden processos can store multiple values in parallel, and preparing the consecutive store requires
some work. We only handle these cases:
1. Consecutive stores where the values and consecutive loads. For example:
int a = p->a;
int b = p->b;
q->a = a;
q->b = b;
2. Consecutive stores where the values are constants. Foe example:
q->a = 4;
q->b = 5;
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164890 91177308-0d34-0410-b5e6-96231b3b80d8
because moden processos can store multiple values in parallel, and preparing the consecutive store requires
some work. We only handle these cases:
1. Consecutive stores where the values and consecutive loads. For example:
int a = p->a;
int b = p->b;
q->a = a;
q->b = b;
2. Consecutive stores where the values are constants. Foe example:
q->a = 4;
q->b = 5;
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164885 91177308-0d34-0410-b5e6-96231b3b80d8
The hasFnAttr method has been replaced by querying the Attributes explicitly. No
intended functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164725 91177308-0d34-0410-b5e6-96231b3b80d8
scalar-to-vector conversion that we cannot handle. For instance, when an invalid
constraint is used in an inline asm statement.
<rdar://problem/12284092>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164662 91177308-0d34-0410-b5e6-96231b3b80d8
scalar-to-vector conversion that we cannot handle. For instance, when an invalid
constraint is used in an inline asm statement.
<rdar://problem/12284092>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164657 91177308-0d34-0410-b5e6-96231b3b80d8
Provide interface in TargetLowering to set or get the minimum number of basic
blocks whereby jump tables are generated for switch statements rather than an
if sequence.
getMinimumJumpTableEntries() defaults to 4.
setMinimumJumpTableEntries() allows target configuration.
This patch changes the default for the Hexagon architecture to 5
as it improves performance on some benchmarks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164628 91177308-0d34-0410-b5e6-96231b3b80d8
- Find a legal vector type before casting and extracting element from it.
- As the new vector type may have more than 2 elements, build the final
hi/lo pair by BFS pairing them from bottom to top.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163830 91177308-0d34-0410-b5e6-96231b3b80d8
by xoring the high-bit. This fails if the source operand is a vector because we need to negate
each of the elements in the vector.
Fix rdar://12281066 PR13813.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163802 91177308-0d34-0410-b5e6-96231b3b80d8
- BlockAddress has no support of BA + offset form and there is no way to
propagate that offset into machine operand;
- Add BA + offset support and a new interface 'getTargetBlockAddress' to
simplify target block address forming;
- All targets are modified to use new interface and X86 backend is enhanced to
support BA + offset addressing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163743 91177308-0d34-0410-b5e6-96231b3b80d8
SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget);
should not be used when Val is not a simple constant (as the comment in
SelectionDAG.h indicates). This patch avoids using this function
when folding an unknown constant through a bitcast, where it cannot be
guaranteed that Val will be a simple constant.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163703 91177308-0d34-0410-b5e6-96231b3b80d8
This folding happens as early as possible for performance reasons, and to make sure it isn't foiled by other transforms (e.g. forming FMAs).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163519 91177308-0d34-0410-b5e6-96231b3b80d8
- CodeGenPrepare pass for identifying div/rem ops
- Backend specifies the type mapping using addBypassSlowDivType
- Enabled only for Intel Atom with O2 32-bit -> 8-bit
- Replace IDIV with instructions which test its value and use DIVB if the value
is positive and less than 256.
- In the case when the quotient and remainder of a divide are used a DIV
and a REM instruction will be present in the IR. In the non-Atom case
they are both lowered to IDIVs and CSE removes the redundant IDIV instruction,
using the quotient and remainder from the first IDIV. However,
due to this optimization CSE is not able to eliminate redundant
IDIV instructions because they are located in different basic blocks.
This is overcome by calculating both the quotient (DIV) and remainder (REM)
in each basic block that is inserted by the optimization and reusing the result
values when a subsequent DIV or REM instruction uses the same operands.
- Test cases check for the presents of the optimization when calculating
either the quotient, remainder, or both.
Patch by Tyler Nowicki!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163150 91177308-0d34-0410-b5e6-96231b3b80d8