This fixes a bug (introduced by fixing the IR emitted from Clang where
the definition of a static member would be scoped within the class,
rather than within its lexical decl context) where the definition of a
static variable would be placed inside a class.
It also improves source fidelity by scoping static class member
definitions inside the lexical decl context in which tehy are written
(eg: namespace n { class foo { static int i; } int foo::i; } - the
definition of 'i' will be within the namespace 'n' in the DWARF output
now).
Lastly, and the original goal, this reduces debug info size slightly
(and makes debug info easier to read, etc) by placing the definitions of
non-member global variables within their namespace, rather than using a
separate namespace-scoped declaration along with a definition at global
scope.
Based on patches and discussion with Frédéric.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220497 91177308-0d34-0410-b5e6-96231b3b80d8
Variable handling will be sunk into DwarfFile so that abstract variables
and the like can be shared across multiple CUs (to handle cross-CU
inlining, for example).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220453 91177308-0d34-0410-b5e6-96231b3b80d8
Use the DwarfDebug in one function that previously took it as a
parameter, and lay the foundation for use this for other operations
coming soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220452 91177308-0d34-0410-b5e6-96231b3b80d8
Now that we're sure the only root (non-abstract) scope is the current
function scope, there's no need for isCurrentFunctionScope, the property
can be tested directly instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220451 91177308-0d34-0410-b5e6-96231b3b80d8
Every target we support has support for assembly that looks like
a = b - c
.long a
What is special about MachO is that the above combination suppresses the
production of a relocation.
With this change we avoid producing the intermediary labels when they don't
add any value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220256 91177308-0d34-0410-b5e6-96231b3b80d8
If we figure out why they should be here, let's add some testing of some
kind so we can better demonstrate why it's needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219694 91177308-0d34-0410-b5e6-96231b3b80d8
Broken parent scope pointers in inlined DIVariables can cause
ensureAbstractVariableIsCreated to insert new abstract scopes, thus
invalidating the iterator in this loop and leading to hard-to-debug
crashes. Useful when manually reducing IR for testcases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219628 91177308-0d34-0410-b5e6-96231b3b80d8
This introduces access to the AbstractSPDies map from DwarfDebug so
DwarfCompileUnit can access it. Eventually this'll sink down to
DwarfFile, but it'll still be generically accessible - not much
encapsulation to provide it. (constructInlinedScopeDIE could stay
further up, in DwarfFile to avoid exposing this - but I don't think
that's particularly better)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219411 91177308-0d34-0410-b5e6-96231b3b80d8
(& add a few accessors/make a couple of things public for this - it's a
bit of a toss-up, but I think I prefer it this way, keeping some more of
the meaty code down in DwarfCompileUnit - if only to make for smaller
implementation files, etc)
I think we could simplify range handling a bit if we removed the range
lists from each unit and just put a single range list on DwarfDebug,
similar to address pooling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219370 91177308-0d34-0410-b5e6-96231b3b80d8
One of many steps to generalize subprogram emission to both the DWO and
non-DWO sections (to emit -gmlt-like data under fission). Once the
functions are pushed down into DwarfCompileUnit some of the data
structures will be pushed at least into DwarfFile so that they can be
unique per-file, allowing emission to both files independently.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219345 91177308-0d34-0410-b5e6-96231b3b80d8
And iterate over the smaller map instead of the larger set first. Reduces the time spent in
calculateDbgValueHistory by 30-40%.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219123 91177308-0d34-0410-b5e6-96231b3b80d8
It was just calling a bunch of DwarfUnit functions anyway, as can be
seen by the simplification of removing "TheCU" from all the function
calls in the implementation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219103 91177308-0d34-0410-b5e6-96231b3b80d8
This requires exposing some of the current function state from
DwarfDebug. I hope there's not too much of that to expose as I go
through all the functions, but it still seems nicer to expose singular
data down to multiple consumers, than have consumers expose raw mapping
data structures up to DwarfDebug for building subprograms.
Part of a series of refactoring to allow subprograms in both the
skeleton and dwo CUs under Fission.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219060 91177308-0d34-0410-b5e6-96231b3b80d8
One of many things to sink down into DwarfCompileUnit to allow handling
of subprograms in both the skeleton and dwo CU under Fission.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219058 91177308-0d34-0410-b5e6-96231b3b80d8
In preparation for sinking all the subprogram emission code down from
DwarfDebug into DwarfCompileUnit, this will avoid bloating
DwarfUnit.h/cpp greatly and make concerns a bit more clear/isolated.
(sinking this handling down is part of the work to handle emitting
minimal subprograms for -gmlt-like data into the skeleton CU under
fission)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219057 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r218918, effectively reapplying r218914 after fixing
an Ocaml bindings test and an Asan crash. The root cause of the latter
was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a
PR to investigate who requires the loose check (and why).
Original commit message follows.
--
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219010 91177308-0d34-0410-b5e6-96231b3b80d8
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218914 91177308-0d34-0410-b5e6-96231b3b80d8
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218787 91177308-0d34-0410-b5e6-96231b3b80d8
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218778 91177308-0d34-0410-b5e6-96231b3b80d8
This allows proper disambiguation of unbounded arrays and arrays of zero
bound ("struct foo { int x[]; };" and "struct foo { int x[0]; }"). GCC
instead produces an upper bound of -1 in the latter situation, but count
seems tidier. This way lower_bound is provided if it's not the language
default and count is provided if the count is known, otherwise it's
omitted. Simple.
If someone wants to look at rdar://problem/12566646 and see if this
change is acceptable to that bug/fix, that might be helpful (see the
empty-and-one-elem-array.ll test case which cites that radar).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218726 91177308-0d34-0410-b5e6-96231b3b80d8