The size reduction in the RegDiffLists are rather dramatic. Here are a few
size differences for MCTargetDesc.o files (before and after) in bytes:
R600 - 36160B - 11184B - 69% reduction
ARM - 28480B - 8368B - 71% reduction
Mips - 816B - 576B - 29% reduction
One side effect of dynamically computing the aliases is that the iterator does
not guarantee that the entries are ordered or that duplicates have been removed.
The documentation implies this is a safe assumption and I found no clients that
requires these attributes (i.e., strict ordering and uniqueness).
My local LNT tester results showed no execution-time failures or significant
compile-time regressions (i.e., beyond what I would consider noise) for -O0g,
-O2 and -O3 runs on x86_64 and i386 configurations.
rdar://12906217
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182783 91177308-0d34-0410-b5e6-96231b3b80d8
Currently the fast-isel table generator recognizes registers, register
classes, and immediates for source pattern operands. ValueType
operands are not recognized. This is not a problem for existing
targets with fast-isel support, but will not work for targets like
PowerPC and SPARC that use types in source patterns.
The proposed patch allows ValueType operands and treats them in the
same manner as register classes. There is no convenient way to map
from a ValueType to a register class, but there's no need to do so.
The table generator already requires that all types in the source
pattern be identical, and we know the register class of the output
operand already. So we just assign that register class to any
ValueType operands we encounter.
No functional effect on existing targets. Testing deferred until the
PowerPC target implements fast-isel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182512 91177308-0d34-0410-b5e6-96231b3b80d8
This lane mask provides information about which register lanes
completely cover super-registers. See the block comment before
getCoveringLanes().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182034 91177308-0d34-0410-b5e6-96231b3b80d8
The problem this patch addresses is the handling of register tie
constraints in AsmMatcherEmitter, where one operand is tied to a
sub-operand of another operand. The typical scenario for this to
happen is the tie between the "write-back" register of a pre-inc
instruction, and the base register sub-operand of the memory address
operand of that instruction.
The current AsmMatcherEmitter code attempts to handle tied
operands by emitting the operand as usual first, and emitting
a CVT_Tied node when handling the second (tied) operand. However,
this really only works correctly if the tied operand does not
have sub-operands (and isn't a sub-operand itself). Under those
circumstances, a wrong MC operand list is generated.
In discussions with Jim Grosbach, it turned out that the MC operand
list really ought not to contain tied operands in the first place;
instead, it ought to consist of exactly those operands that are
named in the AsmString. However, getting there requires significant
rework of (some) targets.
This patch fixes the immediate problem, and at the same time makes
one (small) step in the direction of the long-term solution, by
implementing two changes:
1. Restricts the AsmMatcherEmitter handling of tied operands to
apply solely to simple operands (not complex operands or
sub-operand of such).
This means that at least we don't get silently corrupt MC operand
lists as output. However, if we do have tied sub-operands, they
would now no longer be handled at all, except for:
2. If we have an operand that does not occur in the AsmString,
and also isn't handled as tied operand, simply emit a dummy
MC operand (constant 0).
This works as long as target code never attempts to access
MC operands that do no not occur in the AsmString (and are
not tied simple operands), which happens to be the case for
all targets where this situation can occur (ARM and PowerPC).
[ Note that this change means that many of the ARM custom
converters are now superfluous, since the implement the
same "hack" now performed already by common code. ]
Longer term, we ought to fix targets to never access *any*
MC operand that does not occur in the AsmString (including
tied simple operands), and then finally completely remove
all such operands from the MC operand list.
Patch approved by Jim Grosbach.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180677 91177308-0d34-0410-b5e6-96231b3b80d8
It makes more sense to have git-svnup here than catting said file in the
documentation (where we should rather point users to this directory).
I included git-svnrevert as an additional gift to the community. I will update
the documentation in a second commit later today.
git-svnrevert takes in a git hash for a commit, looks up the svn revision for
said commit and then creates the normal git revert commit message with the one
liner message, except instead of saying
Revert "<<<INSERT ONELINER HERE>>>"
This reverts commit <<<INSERT GITHASH HERE>>>
It says:
Revert "<<<INSERT ONELINER HERE>>>"
This reverts commit r<<<INSERT SVN REVISION HERE>>>
so git hashes will not escape into our svn logs (which just look unseemly).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180587 91177308-0d34-0410-b5e6-96231b3b80d8
Pattern has source location by itself. After adding a trivial method to
retrieve it, it's unnecessary to pair a source location for CHECK-NOT patterns.
One thing revised after this is the diagnostic info is more accurate by
pointing to the start of the CHECK-NOT pattern instead of the end of the
CHECK-NOT pattern. E.g. diagnostic message previously looks like
<stdin>:1:1: error: CHECK-NOT: string occurred!
test
^
test.txt:1:16: note: CHECK-NOT: pattern specified here
CHECK-NOT: test
^
is changed to
<stdin>:1:1: error: CHECK-NOT: string occurred!
test
^
test.txt:1:12: note: CHECK-NOT: pattern specified here
CHECK-NOT: test
^
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180578 91177308-0d34-0410-b5e6-96231b3b80d8
Super-resources and resource groups are two ways of expressing
overlapping sets of processor resources. Now we generate table entries
the same way for both so the scheduler never needs to explicitly check
for super-resources.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180162 91177308-0d34-0410-b5e6-96231b3b80d8
variant/dialect. Addresses a FIXME in the emitMnemonicAliases function.
Use and test case to come shortly.
rdar://13688439 and part of PR13340.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179804 91177308-0d34-0410-b5e6-96231b3b80d8
As these two instructions in AVX extension are privileged instructions for
special purpose, it's only expected to be used in inlined assembly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179266 91177308-0d34-0410-b5e6-96231b3b80d8
It had been dropped during the switch to yaml::IO. Also add a test going
from yaml2obj to llvm-readobj. It can be extended as we add more
fields/formats to yaml2obj.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178786 91177308-0d34-0410-b5e6-96231b3b80d8
Looks like the gcc in http://lab.llvm.org:8011/builders/clang-x86_64-darwin11-self-mingw32/ doesn't like "not external linkage":
/Volumes/Macintosh_HD2/buildbots/clang-x86_64-darwin11-self-mingw32/llvm.src/include/llvm/Support/YAMLTraits.h: In instantiation of 'const bool llvm::yaml::has_SequenceMethodTraits<std::vector<<unnamed>::COFFYAML::Relocation, std::allocator<<unnamed>::COFFYAML::Relocation> > >::value':
/Volumes/Macintosh_HD2/buildbots/clang-x86_64-darwin11-self-mingw32/llvm.src/include/llvm/Support/YAMLTraits.h:281: instantiated from 'llvm::yaml::has_SequenceTraits<std::vector<<unnamed>::COFFYAML::Relocation, std::allocator<<unnamed>::COFFYAML::Relocation> > >'
/Volumes/Macintosh_HD2/buildbots/clang-x86_64-darwin11-self-mingw32/llvm.src/utils/yaml2obj/yaml2obj.cpp:627: instantiated from here
/Volumes/Macintosh_HD2/buildbots/clang-x86_64-darwin11-self-mingw32/llvm.src/include/llvm/Support/YAMLTraits.h:243: error: 'llvm::yaml::SequenceTraits<std::vector<<unnamed>::COFFYAML::Relocation, std::allocator<<unnamed>::COFFYAML::Relocation> > >::size' is not a valid template argument for type 'size_t (*)(llvm::yaml::IO&, std::vector<<unnamed>::COFFYAML::Relocation, std::allocator<<unnamed>::COFFYAML::Relocation> >&)' because function 'static size_t llvm::yaml::SequenceTraits<std::vector<<unnamed>::COFFYAML::Relocation, std::allocator<<unnamed>::COFFYAML::Relocation> > >::size(llvm::yaml::IO&, std::vector<<unnamed>::COFFYAML::Relocation, std::allocator<<unnamed>::COFFYAML::Relocation> >&)' has not external linkage
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178600 91177308-0d34-0410-b5e6-96231b3b80d8
A9 uses itinerary classes, Swift uses RW lists. This tripped some
verification when we're expanding variants. I had to refine the
verification a bit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178357 91177308-0d34-0410-b5e6-96231b3b80d8
This syntax is now preferred:
def : Pat<(subc i32:$b, i32:$c), (SUBCCrr $b, $c)>;
There is no reason to repeat the types in the output pattern.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177844 91177308-0d34-0410-b5e6-96231b3b80d8
This makes it possible to define instruction patterns like this:
def LDri : F3_2<3, 0b000000,
(outs IntRegs:$dst), (ins MEMri:$addr),
"ld [$addr], $dst",
[(set i32:$dst, (load ADDRri:$addr))]>;
~~~
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177834 91177308-0d34-0410-b5e6-96231b3b80d8
Just like register classes, value types can be used in two ways in
patterns:
(sext_inreg i32:$src, i16)
In a named leaf node like i32:$src, the value type simply provides the
type of the node directly. This simplifies type inference a lot compared
to the current practice of specifiying types indirectly with register
classes.
As an unnamed leaf node, like i16 above, the value type represents
itself as an MVT::Other immediate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177828 91177308-0d34-0410-b5e6-96231b3b80d8
A register class can appear as a leaf TreePatternNode with and without a
name:
(COPY_TO_REGCLASS GPR:$src, F8RC)
In a named leaf node like GPR:$src, the register class provides type
information for the named variable represented by the node. The TypeSet
for such a node is the set of value types that the register class can
represent.
In an unnamed leaf node like F8RC above, the register class represents
itself as a kind of immediate. Such a node has the type MVT::i32,
we'll never create a virtual register representing it.
This change makes it possible to remove the special handling of
COPY_TO_REGCLASS in CodeGenDAGPatterns.cpp.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177825 91177308-0d34-0410-b5e6-96231b3b80d8
To use this in conjunction with exuberant ctags to generate a single
combined tags file, run tblgen first and then
$ ctags --append [...]
Since some identifiers have corresponding definitions in C++ code,
it can be useful (if using vim) to also use cscope, and
:set cscopetagorder=1
so that
:tag X
will preferentially select the tablegen symbol, while
:cscope find g X
will always find the C++ symbol.
Patch by Kevin Schoedel!
(a couple small formatting changes courtesy of clang-format)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177682 91177308-0d34-0410-b5e6-96231b3b80d8