We were marking both LLVMBUILDOUTPUT and LLVMBUILDERRORS as
ERROR_VARIABLES when clearly LLVMBUILDOUTPUT should be marked as
OUTPUT_VARIABLE.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188444 91177308-0d34-0410-b5e6-96231b3b80d8
When new virtual registers are created during splitting/spilling, defer
creation of the live interval until we need to use the live interval.
Along with the recent commits to notify LiveRangeEdit when new virtual
registers are created, this makes it possible for functions like
TargetInstrInfo::loadRegFromStackSlot() and
TargetInstrInfo::storeRegToStackSlot() to create multiple virtual
registers as part of the process of generating loads/stores for
different register classes, and then have the live intervals for those
new registers computed when they are needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188437 91177308-0d34-0410-b5e6-96231b3b80d8
MachineInstrSpan is initialized with a MachineBasicBlock::iterator,
and is intended to track which instructions are inserted before/after
that instruction from the time the MachineInstrSpan is created.
It provides a begin()/end() interface to walk the range of
instructions inserted around the initial instruction (including that
initial instruction).
It also provides a getInitial() interface to return the initial
iterator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188436 91177308-0d34-0410-b5e6-96231b3b80d8
Add a delegate class to MachineRegisterInfo with a single virtual
function, MRI_NoteNewVirtualRegister(). Update LiveRangeEdit to inherit
from this delegate class and override the definition of the callback
with an implementation that tracks the newly created virtual registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188435 91177308-0d34-0410-b5e6-96231b3b80d8
Track new virtual registers by register number, rather than by the live
interval created for them. This is the first step in separating the
creation of new virtual registers and new live intervals. Eventually
live intervals will be created and populated on demand after the virtual
registers have been created and used in instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188434 91177308-0d34-0410-b5e6-96231b3b80d8
Now that compute support is better on SI, we can't continue using v16i8
for descriptors since this is also a legal type in OpenCL.
This patch fixes numerous hangs with the piglit OpenCL test and since
we now use a target specific DAG node for LOAD_CONSTANT with the
correct MemOperandFlags, this should also fix:
https://bugs.freedesktop.org/show_bug.cgi?id=66805
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188429 91177308-0d34-0410-b5e6-96231b3b80d8
Using REG_SEQUENCE for BUILD_VECTOR rather than a series of INSERT_SUBREG
instructions should make it easier for the register allocator to coalasce
unnecessary copies.
v2:
- Use an SGPR register class if all the operands of BUILD_VECTOR are
SGPRs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188427 91177308-0d34-0410-b5e6-96231b3b80d8
The instruction selector will now try to infer the destination register
so it can decided whether to use V_MOV_B32 or S_MOV_B32 when copying
immediates.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188426 91177308-0d34-0410-b5e6-96231b3b80d8
The previous code declared the operand as unknown:$vaddr, which made
it possible for scalar registers to be used instead of vector registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188425 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes the F2U opcode for the Mesa driver.
Patch by: Marek Olšák
Signed-off-by: Marek Olšák <marek.olsak@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188418 91177308-0d34-0410-b5e6-96231b3b80d8
This is a follow-up to r187693, correcting that code to request the correct
register class. The previous version, with the wrong register class, was not
really correcting the constraints, but rather was removing them. Coincidentally,
this fixed the failing test case in r187693, but obviously created other
problems.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188407 91177308-0d34-0410-b5e6-96231b3b80d8
This replaces the old incomplete greylist functionality with an ABI
list, which can provide more detailed information about the ABI and
semantics of specific functions. The pass treats every function in
the "uninstrumented" category in the ABI list file as conforming to
the "native" (i.e. unsanitized) ABI. Unless the ABI list contains
additional categories for those functions, a call to one of those
functions will produce a warning message, as the labelling behaviour
of the function is unknown. The other supported categories are
"functional", "discard" and "custom".
- "discard" -- This function does not write to (user-accessible) memory,
and its return value is unlabelled.
- "functional" -- This function does not write to (user-accessible)
memory, and the label of its return value is the union of the label of
its arguments.
- "custom" -- Instead of calling the function, a custom wrapper __dfsw_F
is called, where F is the name of the function. This function may wrap
the original function or provide its own implementation.
Differential Revision: http://llvm-reviews.chandlerc.com/D1345
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188402 91177308-0d34-0410-b5e6-96231b3b80d8
- For whatever reason, we have a lot of test files with bogus unicode
characters. This patch allows those scripts to still be parsed on Python3 by
changing the parsing logic to work on binary files, and only require the
actual script commands to be convertible to ascii.
- This patch has been tweaked to now ensure that the command strings are not of
unicode type on Python 2.6-7.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188398 91177308-0d34-0410-b5e6-96231b3b80d8
When determining if two different loads are from the same base address,
this patch allows one load to use a t2LDRi8 address mode and another to
use a t2LDRi12 address mode. The current implementation is very
conservative and this allows the case of differing Thumb2 byte loads to
be considered. Allowing these differing modes instead of forcing the exact
same opcode is useful for situations where one opcodes loads from a base
address+1 and a second opcode loads for a base address-1.
Patch by Daniel Stewart.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188385 91177308-0d34-0410-b5e6-96231b3b80d8
As Ben pointed out, GAS doesn't support this syntax so we should give at least
some warning that it might not be portable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188377 91177308-0d34-0410-b5e6-96231b3b80d8
- For whatever reason, we have a lot of test files with bogus unicode
characters. This patch allows those scripts to still be parsed on Python3 by
changing the parsing logic to work on binary files, and only require the
actual script commands to be convertible to ascii.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188376 91177308-0d34-0410-b5e6-96231b3b80d8
It's useful to be able to write down floating-point numbers without having to
worry about what they'll be rounded to (as C99 discovered), this extends that
ability to the MC assembly parsers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188370 91177308-0d34-0410-b5e6-96231b3b80d8
extremely subtle miscompilations (such as a load getting replaced with
the value stored *below* the load within a basic block) related to
promoting an alloca to an SSA value, there is the dim possibility that
you hit this. Please let me know if you won this unfortunate lottery.
The first half of mem2reg's core logic (as it is used both in the
standalone mem2reg pass and in SROA) builds up a mapping from
'Instruction *' to the index of that instruction within its basic block.
This allows quickly establishing which store dominate a particular load
even for large basic blocks. We cache this information throughout the
run of mem2reg over a function in order to amortize the cost of
computing it.
This is not in and of itself a strange pattern in LLVM. However, it
introduces a very important constraint: absolutely no instruction can be
deleted from the program without updating the mapping. Otherwise a newly
allocated instruction might get the same pointer address, and then end
up with a wrong index. Yes, LLVM routinely suffers from a *single
threaded* variant of the ABA problem. Most places in LLVM don't find
avoiding this an imposition because they don't both delete and create
new instructions iteratively, but mem2reg *loves* to do this... All the
time. Fortunately, the mem2reg code was really careful about updating
this cache to handle this eventuallity... except when it comes to the
debug declare intrinsic. Oops. The fix is to invalidate that pointer in
the cache when we delete it, the same as we do when deleting alloca
instructions and other instructions.
I've also caused the same bug in new code while working on a fix to
PR16867, so this seems to be a really unfortunate pattern. Hopefully in
subsequent patches the deletion of dead instructions can be consolidated
sufficiently to make it less likely that we'll see future occurences of
this bug.
Sorry for not having a test case, but I have literally no idea how to
reliably trigger this kind of thing. It may be single-threaded, but it
remains an ABA problem. It would require a really amazing number of
stars to align.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188367 91177308-0d34-0410-b5e6-96231b3b80d8