This update was done with the following bash script:
find test/Transforms -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3@$FUNC(/g" $TEMP
done
mv $TEMP $NAME
fi
done
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186268 91177308-0d34-0410-b5e6-96231b3b80d8
The new analysis is not yet ready for prime time. It has a *critical*
flawed assumption, and some troubling shortages of testing. Until it's
been hammered into better shape, let's stick with the working code. This
should be easy to revert itself when the analysis is ready.
Fixes PR14241, a miscompile of any memcpy-able loop which uses a pointer
as the induction mechanism. If you have been seeing miscompiles in this
revision range, you really want to test with this backed out. The
results of this miscompile are a bit subtle as they can lead to
downstream passes concluding things are impossible which are in fact
possible.
Thanks to David Blaikie for the majority of the reduction of this
miscompile. I'll be checking in the test case in a non-revert commit.
Revesions reverted here:
r167045: LoopIdiom: Fix a serious missed optimization: we only turned
top-level loops into memmove.
r166877: LoopIdiom: Add checks to avoid turning memmove into an infinite
loop.
r166875: LoopIdiom: Recognize memmove loops.
r166874: LoopIdiom: Replace custom dependence analysis with
DependenceAnalysis.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167286 91177308-0d34-0410-b5e6-96231b3b80d8
This turns loops like
for (unsigned i = 0; i != n; ++i)
p[i] = p[i+1];
into memmove, which has a highly optimized implementation in most libcs.
This was really easy with the new DependenceAnalysis :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166875 91177308-0d34-0410-b5e6-96231b3b80d8
failing to form a memset, then having to delete it" but my approximation
isn't safe for self recurrent loops. Instead of doign a hack, just
do it the right way.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131858 91177308-0d34-0410-b5e6-96231b3b80d8
constant, including globals. This makes us generate much more "pretty" pattern
globals as well because it doesn't break it down to an array of bytes all the
time.
This enables us to handle stores of relocatable globals. This kicks in about
48 times in 254.gap, giving us stuff like this:
@.memset_pattern40 = internal constant [2 x %struct.TypHeader* (%struct.TypHeader*, %struct.TypHeader*)*] [%struct.TypHeader* (%struct.TypHeader*, %struct
.TypHeader*)* @IsFalse, %struct.TypHeader* (%struct.TypHeader*, %struct.TypHeader*)* @IsFalse], align 16
...
call void @memset_pattern16(i8* %scevgep5859, i8* bitcast ([2 x %struct.TypHeader* (%struct.TypHeader*, %struct.TypHeader*)*]* @.memset_pattern40 to i8*
), i64 %tmp75) nounwind
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126044 91177308-0d34-0410-b5e6-96231b3b80d8
unsplatable values into memset_pattern16 when it is available
(recent darwins). This transforms lots of strided loop stores
of ints for example, like 5 in vpr:
Formed memset: call void @memset_pattern16(i8* %4, i8* getelementptr inbounds ([16 x i8]* @.memset_pattern9, i32 0, i32 0), i64 %tmp25)
from store to: {%3,+,4}<%11> at: store i32 3, i32* %scevgep, align 4, !tbaa !4
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126040 91177308-0d34-0410-b5e6-96231b3b80d8
when safe.
The testcase is basically this nested loop:
void foo(char *X) {
for (int i = 0; i != 100; ++i)
for (int j = 0; j != 100; ++j)
X[j+i*100] = 0;
}
which gets turned into a single memset now. clang -O3 doesn't optimize
this yet though due to a phase ordering issue I haven't analyzed yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122806 91177308-0d34-0410-b5e6-96231b3b80d8
sure that the loop we're promoting into a memcpy doesn't mutate the input
of the memcpy. Before we were just checking that the dest of the memcpy
wasn't mod/ref'd by the loop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122712 91177308-0d34-0410-b5e6-96231b3b80d8
blocks in a loop, instead of just the header block. This makes it more
aggressive, able to handle Duncan's Ada examples.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122704 91177308-0d34-0410-b5e6-96231b3b80d8
header for now for memset/memcpy opportunities. It turns out that loop-rotate
is successfully rotating loops, but *DOESN'T MERGE THE BLOCKS*, turning "for
loops" into 2 basic block loops that loop-idiom was ignoring.
With this fix, we form many *many* more memcpy and memsets than before, including
on the "history" loops in the viterbi benchmark, which look like this:
for (j=0; j<MAX_history; ++j) {
history_new[i][j+1] = history[2*i][j];
}
Transforming these loops into memcpy's speeds up the viterbi benchmark from
11.98s to 3.55s on my machine. Woo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122685 91177308-0d34-0410-b5e6-96231b3b80d8