The rationale here is that it's hard to write loops containing vector erases and
it only shows up if the vector contains non-trivial objects leading to crashes
when forming them out of garbage memory.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160854 91177308-0d34-0410-b5e6-96231b3b80d8
These tables were indexed by [register][subreg index] which made them,
very large and sparse.
Replace them with lists of sub-register indexes that match the existing
lists of sub-registers. MCRI::getSubReg() becomes a very short linear
search, like getSubRegIndex() already was.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160843 91177308-0d34-0410-b5e6-96231b3b80d8
Now that the weird X86 sub_ss and sub_sd sub-register indexes are gone,
there is no longer a need for the CompositeIndices construct in .td
files. Sub-register index composition can be specified on the
SubRegIndex itself using the ComposedOf field.
Also enforce unique names for sub-registers in TableGen. The same
sub-register cannot be available with multiple sub-register indexes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160842 91177308-0d34-0410-b5e6-96231b3b80d8
replace uses of function getMaxCallFrameSize defined in MipsFunctionInfo with
the one MachineFrameInfo has.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160841 91177308-0d34-0410-b5e6-96231b3b80d8
The (COPY_TO_REGCLASS GR32:$src, VR128) pattern looks odd, but
copyPhysReg does the right thing with it. (The old pattern would
eventually produce the same cross-class copy).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160830 91177308-0d34-0410-b5e6-96231b3b80d8
The SUBREG_TO_REG instruction has magic semantics asserting that the
source value was defined by an instruction that cleared the high half of
the register. Those semantics are never actually exploited for xmm
registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160818 91177308-0d34-0410-b5e6-96231b3b80d8
These idempotent sub-register indices don't do anything --- They simply
map XMM registers to themselves. They no longer affect register classes
either since the SubRegClasses field has been removed from Target.td.
This patch replaces XMM->XMM EXTRACT_SUBREG and INSERT_SUBREG patterns
with COPY_TO_REGCLASS patterns which simply become COPY instructions.
The number of IMPLICIT_DEF instructions before register allocation is
reduced, and that is the cause of the test case changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160816 91177308-0d34-0410-b5e6-96231b3b80d8
Function names should be camel case, and start with a lower case letter. No
functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160813 91177308-0d34-0410-b5e6-96231b3b80d8
This is still a work in progress.
Out-of-order CPUs usually execute instructions from multiple basic
blocks simultaneously, so it is necessary to look at longer traces when
estimating the performance effects of code transformations.
The MachineTraceMetrics analysis will pick a typical trace through a
given basic block and provide performance metrics for the trace. Metrics
will include:
- Instruction count through the trace.
- Issue count per functional unit.
- Critical path length, and per-instruction 'slack'.
These metrics can be used to determine the performance limiting factor
when executing the trace, and how it will be affected by a code
transformation.
Initially, this will be used by the early if-conversion pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160796 91177308-0d34-0410-b5e6-96231b3b80d8
hopefully make it more visible. Adjust the web-docs to have a link to
this file rather than the list itself. I described code owners as also
being gatekeepers for their part of the code, which I think is true but
isn't in the code owner explanation on the web page.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160776 91177308-0d34-0410-b5e6-96231b3b80d8
encounter an invoke of an allocation function. This should fix the dragonegg
bootstrap. Testcase to follow, later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160757 91177308-0d34-0410-b5e6-96231b3b80d8
TwoAddressInstructionPass.
The generated code for Atom has a different code sequence. This is realted
to commit r160749.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160755 91177308-0d34-0410-b5e6-96231b3b80d8
original commit msg:
MemoryBuiltins: add support to determine the size of strdup'ed non-constant strings
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160751 91177308-0d34-0410-b5e6-96231b3b80d8
It is redundant; RegisterCoalescer will do the remat if it can't eliminate
the copy. Collected instruction counts before and after this. A few extra
instructions are generated due to spilling but it is normal to see these kinds
of changes with almost any small codegen change, according to Jakob.
This also fixed rdar://11830760 where xor is expected instead of movi0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160749 91177308-0d34-0410-b5e6-96231b3b80d8
When a live range splits into multiple connected components, we would
arbitrarily assign <undef> uses to component 0. This is wrong when the
use is tied to a def that gets assigned to a different component:
%vreg69<def> = ADD8ri %vreg68<undef>, 1
The use and def must get the same virtual register.
Fix this by assigning <undef> uses to the same component as the value
defined by the instruction, if any:
%vreg69<def> = ADD8ri %vreg69<undef>, 1
This fixes PR13402. The PR has a test case which I am not including
because it is unlikely to keep exposing this behavior in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160739 91177308-0d34-0410-b5e6-96231b3b80d8
Before accessing a node as a ConstandSDNode, make sure it actually is one.
No testcase of non-trivial size.
rdar://11948669
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160735 91177308-0d34-0410-b5e6-96231b3b80d8
of an array element (rather than at the beginning of the element) and extended
into the next element, then the load from the second element was being handled
wrong due to incorrect updating of the notion of which byte to load next. This
fixes PR13442. Thanks to Chris Smowton for reporting the problem, analyzing it
and providing a fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160711 91177308-0d34-0410-b5e6-96231b3b80d8
The long branch pass (fixed in r160601) no longer uses the global base register
to compute addresses of branch destinations, so it is not necessary to reserve
a slot on the stack.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160703 91177308-0d34-0410-b5e6-96231b3b80d8
struct s {
double x1;
float x2;
};
__attribute__((regparm(3))) struct s f(int a, int b, int c);
void g(void) {
f(41, 42, 43);
}
We need to be able to represent passing the address of s to f (sret) in a
register (inreg). Turns out that all that is needed is to not mark them as
mutually incompatible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160695 91177308-0d34-0410-b5e6-96231b3b80d8