This changes ARM64 to use separate operands for each component of an
address, and look for separate '[', '$Rn, ..., ']' tokens when
parsing.
This allows us to do away with quite a bit of special C++ code to
handle monolithic "addressing modes" in the MC components. The more
incremental matching of the assembler operands also allows for better
diagnostics when LLVM is presented with invalid input.
Most of the complexity here is with the register-offset instructions,
which were extremely dodgy beforehand: even when the instruction used
wM, LLVM's model had xM as an operand. We papered over this
discrepancy before, but that approach doesn't work now so I split them
into separate X and W variants.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209425 91177308-0d34-0410-b5e6-96231b3b80d8
When multiple aliases overlap, the correct string to print can often be
determined purely by considering the InstAlias declarations in some particular
order. This allows the user to specify that order manually when desired,
without resorting to hacking around with the default lexicographical order on
Record instantiation, which is error-prone and ugly.
I was also mistaken about "add w2, w3, w4" being the same as "add w2, w3, w4,
uxtw". That's only true if Rn is the stack pointer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209199 91177308-0d34-0410-b5e6-96231b3b80d8
TableGen has a fairly dubious heuristic to decide whether an alias should be
printed: does the alias have lest operands than the real instruction. This is
bad enough (particularly with no way to override it), but it should at least be
calculated consistently for both strings.
This patch implements that logic: first get the *correct* string for the
variant, in the same way as the Matcher, without guessing; then count the
number of whitespace chars.
There are basically 4 changes this brings about after the previous
commits; all of these appear to be good, so I have changed the tests:
+ ARM64: we print "neg X, Y" instead of "sub X, xzr, Y".
+ ARM64: we skip implicit "uxtx" and "uxtw" modifiers.
+ Sparc: we print "mov A, B" instead of "or %g0, A, B".
+ Sparc: we print "fcmpX A, B" instead of "fcmpX %fcc0, A, B"
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208969 91177308-0d34-0410-b5e6-96231b3b80d8
In all cases, if a "mov" alias exists, it is the canonical form of the
instruction. Now that TableGen can support aliases containing syntax variants,
we can enable them and improve the quality of the asm output.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208874 91177308-0d34-0410-b5e6-96231b3b80d8
To get at least one use of the change (and some actual tests) in with its
commit, I've enabled the AArch64 & ARM64 NEON mov aliases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208867 91177308-0d34-0410-b5e6-96231b3b80d8
Obviously we can't expect the two backends to produce identical diagnostics,
since what's possible depends quite a bit on how the .td files are structured.
I think the ARM64 diagnostics are basically of the same quality in all the
changed cases, so I've split the CHECK lines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208084 91177308-0d34-0410-b5e6-96231b3b80d8
The canonical form of the BFM instruction is always one of the more explicit
extract or insert operations, which makes reading output much easier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207752 91177308-0d34-0410-b5e6-96231b3b80d8
We already do this for shstrtab, so might as well do it for strtab. This
extracts the string table building code into a separate class. The idea
is to use it for other object formats too.
I mostly wanted to do this for the general principle, but it does save a
little bit on object file size. I tried this on a clang bootstrap and
saved 0.54% on the sum of object file sizes (1.14 MB out of 212 MB for
a release build).
Differential Revision: http://reviews.llvm.org/D3533
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207670 91177308-0d34-0410-b5e6-96231b3b80d8
It's been decided that in the future, the floating-point immediate in
instructions like "fcmeq v0.2s, v1.2s, #0.0" will be canonically "0.0", which
has been implemented on AArch64 already but not ARM64.
This fixes that issue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207666 91177308-0d34-0410-b5e6-96231b3b80d8
This skips a couple of compare ones due to the different syntaxt for
floating-point 0.0. AArch64 does it more canonically, and we'll need to fiddle
ARM64 to make it work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207119 91177308-0d34-0410-b5e6-96231b3b80d8
This matches ARM64 behaviour, which I think is clearer. It also puts all the
churn from that difference into one easily ignored commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207116 91177308-0d34-0410-b5e6-96231b3b80d8
These can have different relocations in ELF. In particular both:
b.eq global
ldr x0, global
are valid, giving different relocations. The only possible way to distinguish
them is via a different fixup, so the operands had to be separated throughout
the backend.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207105 91177308-0d34-0410-b5e6-96231b3b80d8
The test was changed from aarch64 to arm64 but not moved. The test would fail
if the backend was not built.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207029 91177308-0d34-0410-b5e6-96231b3b80d8
For FCMEQ, FCMGE, FCMGT, FCMLE and FCMLT, floating point zero will be
printed as #0.0 instead of #0. To support the history codes using #0,
we consider to let asm parser accept both #0.0 and #0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199621 91177308-0d34-0410-b5e6-96231b3b80d8
copy in MC layer. Added the MC layer tests. Fixed triple setting in test cases.
Patch by Ana Pazos <apazos@codeaurora.org>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194501 91177308-0d34-0410-b5e6-96231b3b80d8