No test case, undefined shifts get folded early, but can occur when other
transforms generate a constant. Thanks to Duncan for bringing this up.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162755 91177308-0d34-0410-b5e6-96231b3b80d8
it here, then a 'register-memory' version would wrongly get the commutative
flag.
<rdar://problem/12180135>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162741 91177308-0d34-0410-b5e6-96231b3b80d8
- Add a target-specific DAG optimization to recognize a pattern PTEST-able.
Such a pattern is a OR'd tree with X86ISD::OR as the root node. When
X86ISD::OR node has only its flag result being used as a boolean value and
all its leaves are extracted from the same vector, it could be folded into an
X86ISD::PTEST node.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162735 91177308-0d34-0410-b5e6-96231b3b80d8
Both single-instruction and multi-instruction patterns can be checked
for missing mayLoad / mayStore, and hasSideEffects flags.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162734 91177308-0d34-0410-b5e6-96231b3b80d8
These extra flags are not required to properly order the atomic
load/store instructions. SelectionDAGBuilder chains atomics as if they
were volatile, and SelectionDAG::getAtomic() sets the isVolatile bit on
the memory operands of all atomic operations.
The volatile bit is enough to order atomic loads and stores during and
after SelectionDAG.
This means we set mayLoad on atomic_load, mayStore on atomic_store, and
mayLoad+mayStore on the remaining atomic read-modify-write operations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162733 91177308-0d34-0410-b5e6-96231b3b80d8
This wasn't the right way to enforce ordering of atomics.
We are already setting the isVolatile bit on memory operands of atomic
operations which is good enough to enforce the correct ordering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162732 91177308-0d34-0410-b5e6-96231b3b80d8
Instructions emitted to compute branch offsets now use immediate operands
instead of symbolic labels. This change was needed because there were problems
when R_MIPS_HI16/LO16 relocations were used to make shared objects.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162731 91177308-0d34-0410-b5e6-96231b3b80d8
Slight reorganisation of PPC instruction classes for scheduling. No
functionality change for existing subtargets.
- Clearly separate load/store-with-update instructions from regular loads and stores.
- Split IntRotateD -> IntRotateD and IntRotateDI
- Split out fsub and fadd from FPGeneral -> FPAddSub
- Update existing itineraries
Patch by Tobias von Koch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162729 91177308-0d34-0410-b5e6-96231b3b80d8
In SelectionDAGLegalize::ExpandLegalINT_TO_FP, expand INT_TO_FP nodes without
using any f64 operations if f64 is not a legal type.
Patch by Stefan Kristiansson.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162728 91177308-0d34-0410-b5e6-96231b3b80d8
Allow load-immediates to be rematerialised in the register coalescer for
PPC. This makes test/CodeGen/PowerPC/big-endian-formal-args.ll fail,
because it relies on a register move getting emitted. The immediate load is
equivalent, so change this test case.
Patch by Tobias von Koch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162727 91177308-0d34-0410-b5e6-96231b3b80d8
Adds the vendor 'fsl' (used by Freescale SDK) to Triple. This will allow
clang support for Freescale cross-compile configurations.
Patch by Tobias von Koch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162726 91177308-0d34-0410-b5e6-96231b3b80d8
The 32-bit ABI requires CR bit 6 to be set if the call has fp arguments and
unset if it doesn't. The solution up to now was to insert a MachineNode to
set/unset the CR bit, which produces a CR vreg. This vreg was then copied
into CR bit 6. When the register allocator saw a bunch of these in the same
function, it allocated the set/unset CR bit in some random CR register (1
extra instruction) and then emitted CR moves before every vararg function
call, rather than just setting and unsetting CR bit 6 directly before every
vararg function call. This patch instead inserts a PPCcrset/PPCcrunset
instruction which are then matched by a dedicated instruction pattern.
Patch by Tobias von Koch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162725 91177308-0d34-0410-b5e6-96231b3b80d8
The zeroextend IR instruction is lowered to an 'and' node with an immediate
mask operand, which in turn gets legalised to a sequence of ori's & ands.
This can be done more efficiently using the rldicl instruction.
Patch by Tobias von Koch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162724 91177308-0d34-0410-b5e6-96231b3b80d8
It is not safe to use normal LDR instructions because they may be
reordered by the scheduler. The ATOMIC_LDR pseudos have a mayStore flag
that prevents reordering.
Atomic loads are also prevented from participating in rematerialization
and load folding.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162713 91177308-0d34-0410-b5e6-96231b3b80d8
This section (introduced in DWARF-3) is used to define instruction address
ranges for functions that are not contiguous and can't be described
by low_pc/high_pc attributes (this is the usual case for inlined subroutines).
The patch is the first step to support fetching complete inlining info from DWARF.
Reviewed by Benjamin Kramer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162657 91177308-0d34-0410-b5e6-96231b3b80d8
corresponding changes to existing tests for darwin triple to ensure that
same pattern is tested for bdver2 target.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162655 91177308-0d34-0410-b5e6-96231b3b80d8
ARMConstantIslandPass expects this instruction to stay in the same basic
block as the jump table branch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162615 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, instructions without a primary patterns wouldn't get their
properties inferred. Now, we use all single-instruction patterns for
inference, including 'def : Pat<>' instances.
This causes a lot of instruction flags to change.
- Many instructions no longer have the UnmodeledSideEffects flag because
their flags are now inferred from a pattern.
- Instructions with intrinsics will get a mayStore flag if they already
have UnmodeledSideEffects and a mayLoad flag if they already have
mayStore. This is because intrinsics properties are linear.
- Instructions with atomic_load patterns get a mayStore flag because
atomic loads can't be reordered. The correct workaround is to create
pseudo-instructions instead of using normal loads. PR13693.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162614 91177308-0d34-0410-b5e6-96231b3b80d8
It's not clear that they should be marked as such, but tbb formation
fails if t2LEApcrelJT is hoisted of of a loop.
This doesn't change the flags on these instructions,
UnmodeledSideEffects was already inferred from the missing pattern.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162603 91177308-0d34-0410-b5e6-96231b3b80d8
Instructions are now only marked as variadic if they use variable_ops in
their ins list.
A variadic SDNode is typically used for call nodes that have the call
arguments as operands.
A variadic MachineInstr can actually encode a variable number of
operands, for example ARM's stm/ldm instructions. A call instruction
does not have to be variadic. The call argument registers are added as
implicit operands.
This change remove the MCID::Variadic flags from most call and return
instructions, allowing us to better verify their operands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162599 91177308-0d34-0410-b5e6-96231b3b80d8