Sometimes a LLVM compilation may take more time then a client would like to
wait for. The problem is that it is not possible to safely suspend the LLVM
thread from the outside. When the timing is bad it might be possible that the
LLVM thread holds a global mutex and this would block any progress in any other
thread.
This commit adds a new yield callback function that can be registered with a
context. LLVM will try to yield by calling this callback function, but there is
no guaranteed frequency. LLVM will only do so if it can guarantee that
suspending the thread won't block any forward progress in other LLVM contexts
in the same process.
Once the client receives the call back it can suspend the thread safely and
resume it at another time.
Related to <rdar://problem/16728690>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208945 91177308-0d34-0410-b5e6-96231b3b80d8
This commit provides the necessary C/C++ APIs and infastructure to enable fine-
grain progress report and safe suspension points after each pass in the pass
manager.
Clients can provide a callback function to the pass manager to call after each
pass. This can be used in a variety of ways (progress report, dumping of IR
between passes, safe suspension of threads, etc).
The run listener list is maintained in the LLVMContext, which allows a multi-
threaded client to be only informed for it's own thread. This of course assumes
that the client created a LLVMContext for each thread.
This fixes <rdar://problem/16728690>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207430 91177308-0d34-0410-b5e6-96231b3b80d8
Cygwin is now a proper environment rather than an OS. This updates the MCJIT
tests to avoid execution on Cygwin. This fixes native cygwin tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205266 91177308-0d34-0410-b5e6-96231b3b80d8
This compiles with no changes to clang/lld/lldb with MSVC and includes
overloads to various functions which are used by those projects and llvm
which have OwningPtr's as parameters. This should allow out of tree
projects some time to move. There are also no changes to libs/Target,
which should help out of tree targets have time to move, if necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203083 91177308-0d34-0410-b5e6-96231b3b80d8
See
<rdar://16149106> [MCJIT] provide a platform-independent way to communicate callee-save frame info.
<rdar://16149279> [MCJIT] get the host OS version from a runtime check, not a configure-time check.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202082 91177308-0d34-0410-b5e6-96231b3b80d8
should not be marked nounwind.
Marking them nounwind caused crashes in the WebKit FTL JIT, because if we enable
sufficient optimizations, LLVM starts eliding compact_unwind sections (or any unwind
data for that matter), making deoptimization via stackmaps impossible.
This changes the stackmap intrinsic to be may-throw, adds a test for exactly the
sympton that WebKit saw, and fixes TableGen to handle un-attributed intrinsics.
Thanks to atrick and philipreames for reviewing this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201826 91177308-0d34-0410-b5e6-96231b3b80d8
required for all sections in a module. This can be useful when targets or
code-models place strict requirements on how sections must be laid out
in memory.
If RTDyldMemoryManger::needsToReserveAllocationSpace() is overridden to return
true then the JIT will call the following method on the memory manager, which
can be used to preallocate the necessary memory.
void RTDyldMemoryManager::reserveAllocationSpace(uintptr_t CodeSize,
uintptr_t DataSizeRO,
uintptr_t DataSizeRW)
Patch by Vaidas Gasiunas. Thanks very much Viadas!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201259 91177308-0d34-0410-b5e6-96231b3b80d8
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.
Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198685 91177308-0d34-0410-b5e6-96231b3b80d8
This patch places class definitions in implementation files into anonymous
namespaces to prevent weak vtables. This eliminates the need of providing an
out-of-line definition to pin the vtable explicitly to the file.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195092 91177308-0d34-0410-b5e6-96231b3b80d8
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file. The memory leaks in this version have been fixed. Thanks
Alexey for pointing them out.
Differential Revision: http://llvm-reviews.chandlerc.com/D2068
Reviewed by Andy
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195064 91177308-0d34-0410-b5e6-96231b3b80d8
This change is incorrect. If you delete virtual destructor of both a base class
and a subclass, then the following code:
Base *foo = new Child();
delete foo;
will not cause the destructor for members of Child class. As a result, I observe
plently of memory leaks. Notable examples I investigated are:
ObjectBuffer and ObjectBufferStream, AttributeImpl and StringSAttributeImpl.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194997 91177308-0d34-0410-b5e6-96231b3b80d8
It's useful for the memory managers that are allocating a section to know what the name of the section is.
At a minimum, this is useful for low-level debugging - it's customary for JITs to be able to tell you what
memory they allocated, and as part of any such dump, they should be able to tell you some meta-data about
what each allocation is for. This allows clients that supply their own memory managers to do this.
Additionally, we also envision the SectionName being useful for passing meta-data from within LLVM to an LLVM
client.
This changes both the C and C++ APIs, and all of the clients of those APIs within LLVM. I'm assuming that
it's safe to change the C++ API because that API is allowed to change. I'm assuming that it's safe to change
the C API because we haven't shipped the API in a release yet (LLVM 3.3 doesn't include the MCJIT memory
management C API).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191804 91177308-0d34-0410-b5e6-96231b3b80d8
Similar to ARM change r182800, dynamic linker will read bits/addends from
the original object rather than from the object that might have been patched
previously. For the purpose of relocations for MCJIT stubs on MIPS, we
internally use otherwise unused MIPS relocations.
The change also enables MCJIT unit tests for MIPS (EL/BE), and the following
two tests now pass:
- MCJITTest.return_global and
- MCJITTest.multiple_functions.
These issues have been tracked as Bug 16250.
Patch by Petar Jovanovic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187019 91177308-0d34-0410-b5e6-96231b3b80d8
- lit tests verify that each line of input LLVM IR gets a !dbg node and a
corresponding entry of metadata that contains the line number
- unit tests verify that DebugIR works as advertised in the interface
- refactored some useful IR generation functionality from the MCJIT unit tests
so it can be reused
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185212 91177308-0d34-0410-b5e6-96231b3b80d8
MIPS does not handle multiple relocations correctly, so two tests from the
unittests are expected to fail. These are:
- MCJITTest.return_global and
- MCJITTest.multiple_functions.
Until the multiple relocations are fixed, XFAIL the MCJIT unittests for
MIPS. This issue is tracked as Bug 16250.
Patch by Petar Jovanovic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184461 91177308-0d34-0410-b5e6-96231b3b80d8
the C API to provide their own way of allocating JIT memory (both code
and data) and finalizing memory permissions (page protections, cache
flush).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182448 91177308-0d34-0410-b5e6-96231b3b80d8
the C API to provide their own way of allocating JIT memory (both code
and data) and finalizing memory permissions (page protections, cache
flush).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182408 91177308-0d34-0410-b5e6-96231b3b80d8
the JIT object (including XFAIL an ARM test that now needs fixing). Also renames
internal function for consistency.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182085 91177308-0d34-0410-b5e6-96231b3b80d8
BitVector/SmallBitVector::reference::operator bool remain implicit since
they model more exactly a bool, rather than something else that can be
boolean tested.
The most common (non-buggy) case are where such objects are used as
return expressions in bool-returning functions or as boolean function
arguments. In those cases I've used (& added if necessary) a named
function to provide the equivalent (or sometimes negative, depending on
convenient wording) test.
One behavior change (YAMLParser) was made, though no test case is
included as I'm not sure how to reach that code path. Essentially any
comparison of llvm::yaml::document_iterators would be invalid if neither
iterator was at the end.
This helped uncover a couple of bugs in Clang - test cases provided for
those in a separate commit along with similar changes to `operator bool`
instances in Clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181868 91177308-0d34-0410-b5e6-96231b3b80d8
EngineBuilder interface required a JITMemoryManager even if it was being used
to construct an MCJIT. But the MCJIT actually wants a RTDyldMemoryManager.
Consequently, the SectionMemoryManager, which is meant for MCJIT, derived
from the JITMemoryManager and then stubbed out a bunch of JITMemoryManager
methods that weren't relevant to the MCJIT.
This patch fixes the situation: it teaches the EngineBuilder that
RTDyldMemoryManager is a supertype of JITMemoryManager, and that it's
appropriate to pass a RTDyldMemoryManager instead of a JITMemoryManager if
we're using the MCJIT. This allows us to remove the stub methods from
SectionMemoryManager, and make SectionMemoryManager a direct subtype of
RTDyldMemoryManager.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181820 91177308-0d34-0410-b5e6-96231b3b80d8
MCJIT on Windows requires an explicit target triple with "-elf" appended to generate objects in ELF format. The common test framework was setting up this triple, but it wasn't passed to the C API in the test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181614 91177308-0d34-0410-b5e6-96231b3b80d8
CodeModel: It's now possible to create an MCJIT instance with any CodeModel you like. Previously it was only possible to
create an MCJIT that used CodeModel::JITDefault.
EnableFastISel: It's now possible to turn on the fast instruction selector.
The CodeModel option required some trickery. The problem is that previously, we were ensuring future binary compatibility in
the MCJITCompilerOptions by mandating that the user bzero's the options struct and passes the sizeof() that he saw; the
bindings then bzero the remaining bits. This works great but assumes that the bitwise zero equivalent of any field is a
sensible default value.
But this is not the case for LLVMCodeModel, or its internal equivalent, llvm::CodeModel::Model. In both of those, the default
for a JIT is CodeModel::JITDefault (or LLVMCodeModelJITDefault), which is not bitwise zero.
Hence this change introduces LLVMInitializeMCJITCompilerOptions(), which will initialize the user's options struct with
defaults. The user will use this in the same way that they would have previously used memset() or bzero(). MCJITCAPITest.cpp
illustrates the change, as does the comment in ExecutionEngine.h.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180893 91177308-0d34-0410-b5e6-96231b3b80d8
Re-submitting with fix for OCaml dependency problems (removing dependency on SectionMemoryManager when it isn't used).
Patch by Fili Pizlo
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180720 91177308-0d34-0410-b5e6-96231b3b80d8