Some types, such as 128-bit vector types on AArch64, don't have any callee-saved registers. So if a value needs to stay live over a callsite, it must be spilled and refilled. This cost is now taken into account.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214859 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds scoped noalias metadata. The primary motivations for this
feature are:
1. To preserve noalias function attribute information when inlining
2. To provide the ability to model block-scope C99 restrict pointers
Neither of these two abilities are added here, only the necessary
infrastructure. In fact, there should be no change to existing functionality,
only the addition of new features. The logic that converts noalias function
parameters into this metadata during inlining will come in a follow-up commit.
What is added here is the ability to generally specify noalias memory-access
sets. Regarding the metadata, alias-analysis scopes are defined similar to TBAA
nodes:
!scope0 = metadata !{ metadata !"scope of foo()" }
!scope1 = metadata !{ metadata !"scope 1", metadata !scope0 }
!scope2 = metadata !{ metadata !"scope 2", metadata !scope0 }
!scope3 = metadata !{ metadata !"scope 2.1", metadata !scope2 }
!scope4 = metadata !{ metadata !"scope 2.2", metadata !scope2 }
Loads and stores can be tagged with an alias-analysis scope, and also, with a
noalias tag for a specific scope:
... = load %ptr1, !alias.scope !{ !scope1 }
... = load %ptr2, !alias.scope !{ !scope1, !scope2 }, !noalias !{ !scope1 }
When evaluating an aliasing query, if one of the instructions is associated
with an alias.scope id that is identical to the noalias scope associated with
the other instruction, or is a descendant (in the scope hierarchy) of the
noalias scope associated with the other instruction, then the two memory
accesses are assumed not to alias.
Note that is the first element of the scope metadata is a string, then it can
be combined accross functions and translation units. The string can be replaced
by a self-reference to create globally unqiue scope identifiers.
[Note: This overview is slightly stylized, since the metadata nodes really need
to just be numbers (!0 instead of !scope0), and the scope lists are also global
unnamed metadata.]
Existing noalias metadata in a callee is "cloned" for use by the inlined code.
This is necessary because the aliasing scopes are unique to each call site
(because of possible control dependencies on the aliasing properties). For
example, consider a function: foo(noalias a, noalias b) { *a = *b; } that gets
inlined into bar() { ... if (...) foo(a1, b1); ... if (...) foo(a2, b2); } --
now just because we know that a1 does not alias with b1 at the first call site,
and a2 does not alias with b2 at the second call site, we cannot let inlining
these functons have the metadata imply that a1 does not alias with b2.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213864 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds support to recognize patterns such as fadd,fsub,fadd,fsub.../add,sub,add,sub... and
vectorizes them as vector shuffles if they are profitable.
These patterns of vector shuffle can later be converted to instructions such as addsubpd etc on X86.
Thanks to Arnold and Hal for the reviews. http://reviews.llvm.org/D4015
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211339 91177308-0d34-0410-b5e6-96231b3b80d8
If we have common uses on separate paths in the tree; process the one with greater common depth first.
This makes sure that we do not assume we need to extract a load when it is actually going to be part of a vectorized tree.
Review: http://reviews.llvm.org/D3800
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210310 91177308-0d34-0410-b5e6-96231b3b80d8
Turns out that there is a very cheap way of testing whether a block is dead,
just look it up in the DomTree. We have to do this anyways so just ignore
unreachable blocks before sorting by domination. This restores a proper
ordering for std::stable_sort when dead code is present.
Covered by existing tests & buildbots running in STL debug mode (MSVC).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208492 91177308-0d34-0410-b5e6-96231b3b80d8
There is no total ordering if the CFG is disconnected. We don't care if we
catch all CSE opportunities in dead code either so just exclude ignore them in
the assert.
PR19646
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208461 91177308-0d34-0410-b5e6-96231b3b80d8
When can't assume a vectorized tree is rooted in an instruction. The IRBuilder
could have constant folded it. When we rebuild the build_vector (the series of
InsertElement instructions) use the last original InsertElement instruction. The
vectorized tree root is guaranteed to be before it.
Also, we can't assume that the n-th InsertElement inserts the n-th element into
a vector.
This reverts r207746 which reverted the revert of the revert of r205018 or so.
Fixes the test case in PR19621.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207939 91177308-0d34-0410-b5e6-96231b3b80d8
There is no point in creating it if we're not going to vectorize
anything. Creating the map is expensive as it creates large values.
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207916 91177308-0d34-0410-b5e6-96231b3b80d8
=[
Turns out that this was the root cause of PR19621. We found a crasher
only recently (likely due to improvements elsewhere in the SLP
vectorizer) but the reduced test case failed all the way back to here.
I've confirmed that reverting this patch both fixes the reduced test
case in PR19621 and the actual source file that led to it, so it seems
to really be rooted here. I've replied to the commit thread with
discussion of my (feeble) attempts to debug this. Didn't make it very
far, so reverting now that we have a good test case so that things can
get back to healthy while the debugging carries on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207746 91177308-0d34-0410-b5e6-96231b3b80d8
definition below all of the header #include lines, lib/Transforms/...
edition.
This one is tricky for two reasons. We again have a couple of passes
that define something else before the includes as well. I've sunk their
name macros with the DEBUG_TYPE.
Also, InstCombine contains headers that need DEBUG_TYPE, so now those
headers #define and #undef DEBUG_TYPE around their code, leaving them
well formed modular headers. Fixing these headers was a large motivation
for all of these changes, as "leaky" macros of this form are hard on the
modules implementation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206844 91177308-0d34-0410-b5e6-96231b3b80d8
The vectorizer only knows how to vectorize intrinics by widening all operands by
the same factor.
Patch by Tyler Nowicki!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205855 91177308-0d34-0410-b5e6-96231b3b80d8
Some Intrinsics are overloaded to the extent that return type equality (all
that's been checked up to now) does not guarantee that the arguments are the
same. In these cases SLP vectorizer should not recurse into the operands, which
can be achieved by comparing them as "Function *" rather than simply the ID.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205424 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r205018.
Conflicts:
lib/Transforms/Vectorize/SLPVectorizer.cpp
test/Transforms/SLPVectorizer/X86/insert-element-build-vector.ll
This is breaking libclc build.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205260 91177308-0d34-0410-b5e6-96231b3b80d8
Extract element instructions that will be removed when vectorzing lower the
cost.
Patch by Arch D. Robison!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205020 91177308-0d34-0410-b5e6-96231b3b80d8
Extracts coming from phis were being hoisted, while all others were
sunk to their uses. This was inconsistent and didn't seem to serve a
purpose. Changing all extracts to be sunk to uses is a prerequisite
for adding block frequency to the SLP vectorizer's cost model.
I benchmarked the change in isolation (without block frequency). I
only saw noise on x86 and some potentially significant improvements on
ARM. No major regressions is good enough for me.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204699 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit 86cb795388643710dab34941ddcb5a9470ac39d8.
The problems previously found have been resolved through other CLs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203707 91177308-0d34-0410-b5e6-96231b3b80d8
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
detail
2) Change it to actually be a *Use* iterator rather than a *User*
iterator.
3) Add an adaptor which is a User iterator that always looks through the
Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
they wanted a use_iterator (and to explicitly dig out the User when
needed), or a user_iterator which makes the Use itself totally
opaque.
Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.
The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.
However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
Instead, have a DataLayoutPass that holds one. This will allow parts of LLVM
don't don't handle passes to also use DataLayout.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202168 91177308-0d34-0410-b5e6-96231b3b80d8
'OK_NonUniformConstValue' to identify operands which are constants but
not constant splats.
The cost model now allows returning 'OK_NonUniformConstValue'
for non splat operands that are instances of ConstantVector or
ConstantDataVector.
With this change, targets are now able to compute different costs
for instructions with non-uniform constant operands.
For example, On X86 the cost of a vector shift may vary depending on whether
the second operand is a uniform or non-uniform constant.
This patch applies the following changes:
- The cost model computation now takes into account non-uniform constants;
- The cost of vector shift instructions has been improved in
X86TargetTransformInfo analysis pass;
- BBVectorize, SLPVectorizer and LoopVectorize now know how to distinguish
between non-uniform and uniform constant operands.
Added a new test to verify that the output of opt
'-cost-model -analyze' is valid in the following configurations: SSE2,
SSE4.1, AVX, AVX2.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201272 91177308-0d34-0410-b5e6-96231b3b80d8
Ideally only those transform passes that run at -O0 remain enabled,
in reality we get as close as we reasonably can.
Passes are responsible for disabling themselves, it's not the job of
the pass manager to do it for them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200892 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r200576. It broke 32-bit self-host builds by
vectorizing two calls to @llvm.bswap.i64, which we then fail to expand.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200602 91177308-0d34-0410-b5e6-96231b3b80d8
transform accordingly. Based on similar code from Loop vectorization.
Subsequent commits will include vectorization of function calls to
vector intrinsics and form function calls to vector library calls.
Patch by Raul Silvera! (Much delayed due to my not running dcommit)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200576 91177308-0d34-0410-b5e6-96231b3b80d8
Sweep the codebase for common typos. Includes some changes to visible function
names that were misspelt.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200018 91177308-0d34-0410-b5e6-96231b3b80d8