just calling into MAI and is only abstracting for a single interface that
we actually need to check in multiple places.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198092 91177308-0d34-0410-b5e6-96231b3b80d8
ConstantSDNodes (or UNDEFs) into a simple BUILD_VECTOR.
For example, given the following sequence of dag nodes:
i32 C = Constant<1>
v4i32 V = BUILD_VECTOR C, C, C, C
v4i32 Result = SIGN_EXTEND_INREG V, ValueType:v4i1
The SIGN_EXTEND_INREG node can be folded into a build_vector since
the vector in input is a BUILD_VECTOR of constants.
The optimized sequence is:
i32 C = Constant<-1>
v4i32 Result = BUILD_VECTOR C, C, C, C
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198084 91177308-0d34-0410-b5e6-96231b3b80d8
It's no longer necessary to lazily add members to the DICompositeType
member list. Instead any lazy members (special member functions and
member template instantiations) are added to the parent late based on
their context link, the same way that nested types have always been
handled (never being in the member list - just added to the parent DIE
lazily based on context).
Clang's been updated not to use this function anymore as it improves
type unit consistency by never emitting lazy members in type units.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198079 91177308-0d34-0410-b5e6-96231b3b80d8
This is an iterator which you can build around a MemoryBuffer. It will
iterate through the non-empty, non-comment lines of the buffer as
a forward iterator. It should be small and reasonably fast (although it
could be made much faster if anyone cares, I don't really...).
This will be used to more simply support the text-based sample
profile file format, and is largely based on the original patch by
Diego. I've re-worked the style of it and separated it from the work of
producing a MemoryBuffer from a file which both simplifies the interface
and makes it easier to test.
The style of the API follows the C++ standard naming conventions to fit
in better with iterators in general, much like the Path and FileSystem
interfaces follow standard-based naming conventions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198068 91177308-0d34-0410-b5e6-96231b3b80d8
Split sadd.with.overflow into add + sadd.with.overflow to allow
analysis and optimization. This should ideally be done after
InstCombine, which can perform code motion (eventually indvars should
run after all canonical instcombines). We want ISEL to recombine the
add and the check, at least on x86.
This is currently under an option for reducing live induction
variables: -liv-reduce. The next step is reducing liveness of IVs that
are live out of the overflow check paths. Once the related
optimizations are fully developed, reviewed and tested, I do expect
this to become default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197926 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Before this change the instrumented code before Ret instructions looked like:
<Unpoison Frame Redzones>
if (Frame != OriginalFrame) // I.e. Frame is fake
<Poison Complete Frame>
Now the instrumented code looks like:
if (Frame != OriginalFrame) // I.e. Frame is fake
<Poison Complete Frame>
else
<Unpoison Frame Redzones>
Reviewers: eugenis
Reviewed By: eugenis
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2458
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197907 91177308-0d34-0410-b5e6-96231b3b80d8
This is needed to guard an upcoming feature in clang until the C++11 transition
is complete, at which point it can be removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197895 91177308-0d34-0410-b5e6-96231b3b80d8
where it's only bool-like 1/0 result like std::set.count().
Some of the LLVM ADT already return unsigned count(), while
others return bool count().
This patch modifies SmallPtrSet, SmallSet, SparseSet count()
to return unsigned instead of bool:
1 instead of true
0 instead of false
More ADT to follow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197879 91177308-0d34-0410-b5e6-96231b3b80d8
This callback is invoked when the parse has finished successfuly. It
will be used to write out ARM constant pools to implement the ldr
pseudo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197706 91177308-0d34-0410-b5e6-96231b3b80d8
Unfortunately, the PowerPC instruction definitions make heavy use of the
positional operand encoding heuristic to map operands onto bitfield variables
in the instruction definitions. Changing this to use name-based mapping is not
trivial, however, because additional infrastructure needs to be designed to
handle mapping of complex operands (with multiple suboperands) onto multiple
bitfield variables.
In the mean time, this adds support for positionally encoded operands to
FixedLenDecoderEmitter, so that we can generate a disassembler for the PowerPC
backend. To prevent an accidental reliance on this feature, and to prevent an
undesirable interaction with existing disassemblers, a backend must opt-in to
this support by setting the new decodePositionallyEncodedOperands
instruction-set bit to true.
When enabled, this iterates the variables that contribute to the instruction
encoding, just as the encoder does, and emulates the procedure the encoder uses
to map "numbered" operands to variables. The bit range for each variable is
also determined as the encoder determines them. This map is then consulted
during the decoder-generator's loop over operands to decode, allowing the
decoder to understand both position-based and name-based operand-to-variable
mappings.
As noted in the comment on the decodePositionallyEncodedOperands definition,
this support should be removed once it is no longer needed. There should be no
change to existing disassemblers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197691 91177308-0d34-0410-b5e6-96231b3b80d8
Currently SplitBlockAndInsertIfThen requires that branch condition is an
Instruction itself, which is very inconvenient, because it is sometimes an
Operator, or even a Constant.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197677 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for the .inst directive. This is an ARM specific directive to
indicate an instruction encoded as a constant expression. The major difference
between .word, .short, or .byte and .inst is that the latter will be
disassembled as an instruction since it does not get flagged as data.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197657 91177308-0d34-0410-b5e6-96231b3b80d8
This changes the MachineFrameInfo API to use the new SSPLayoutKind information
produced by the StackProtector pass (instead of a boolean flag) and updates a
few pass dependencies (to preserve the SSP analysis).
The stack layout follows the same approach used prior to this change - i.e.,
only LargeArray stack objects will be placed near the canary and everything
else will be laid out normally. After this change, structures containing large
arrays will also be placed near the canary - a case previously missed by the
old implementation.
Out of tree targets will need to update their usage of
MachineFrameInfo::CreateStackObject to remove the MayNeedSP argument.
The next patch will implement the rules for sspstrong and sspreq. The end goal
is to support ssp-strong stack layout rules.
WIP.
Differential Revision: http://llvm-reviews.chandlerc.com/D2158
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197653 91177308-0d34-0410-b5e6-96231b3b80d8
The inalloca attribute is designed to support passing C++ objects by
value in the Microsoft C++ ABI. It behaves the same as byval, except
that it always implies that the argument is in memory and that the bytes
are never copied. This attribute allows the caller to take the address
of an outgoing argument's memory and execute arbitrary code to store
into it.
This patch adds basic IR support, docs, and verification. It does not
attempt to implement any lowering or fix any possibly broken transforms.
When this patch lands, a complete description of this feature should
appear at http://llvm.org/docs/InAlloca.html .
Differential Revision: http://llvm-reviews.chandlerc.com/D2173
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197645 91177308-0d34-0410-b5e6-96231b3b80d8
Similar to the file summaries, the function summaries output line,
branching and call statistics. The file summaries have been moved
outside the initial loop so that all of the function summaries can be
outputted before file summaries.
Also updated test cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197633 91177308-0d34-0410-b5e6-96231b3b80d8
File summaries will now be optionally outputted which will give line,
branching and call coverage info. Unfortunately, clang's current
instrumentation does not give enough information to deduce function
calls, something that gcc is able to do. Thus, no calls are always
outputted to be consistent with gcov output.
Also updated tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197606 91177308-0d34-0410-b5e6-96231b3b80d8
This will cause llvm-cov to output branch counts instead of branch
probabilities. -b must be enabled.
Also updated tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197594 91177308-0d34-0410-b5e6-96231b3b80d8
This reapplies r197438 and fixes the link-time circular dependency between
IR and Support. The fix consists in moving the diagnostic support into IR.
The patch adds a new LLVMContext::diagnose that can be used to communicate to
the front-end, if any, that something of interest happened.
The diagnostics are supported by a new abstraction, the DiagnosticInfo class.
The base class contains the following information:
- The kind of the report: What this is about.
- The severity of the report: How bad this is.
This patch also adds 2 classes:
- DiagnosticInfoInlineAsm: For inline asm reporting. Basically, this diagnostic
will be used to switch to the new diagnostic API for LLVMContext::emitError.
- DiagnosticStackSize: For stack size reporting. Comes as a replacement of the
hard coded warning in PEI.
This patch also features dynamic diagnostic identifiers. In other words plugins
can use this infrastructure for their own diagnostics (for more details, see
getNextAvailablePluginDiagnosticKind).
This patch introduces a new DiagnosticHandlerTy and a new DiagnosticContext in
the LLVMContext that should be set by the front-end to be able to map these
diagnostics in its own system.
http://llvm-reviews.chandlerc.com/D2376
<rdar://problem/15515174>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197508 91177308-0d34-0410-b5e6-96231b3b80d8
The patch adds a new LLVMContext::diagnose that can be used to communicate to
the front-end, if any, that something of interest happened.
The diagnostics are supported by a new abstraction, the DiagnosticInfo class.
The base class contains the following information:
- The kind of the report: What this is about.
- The severity of the report: How bad this is.
This patch also adds 2 classes:
- DiagnosticInfoInlineAsm: For inline asm reporting. Basically, this diagnostic
will be used to switch to the new diagnostic API for LLVMContext::emitError.
- DiagnosticStackSize: For stack size reporting. Comes as a replacement of the
hard coded warning in PEI.
This patch also features dynamic diagnostic identifiers. In other words plugins
can use this infrastructure for their own diagnostics (for more details, see
getNextAvailablePluginDiagnosticKind).
This patch introduces a new DiagnosticHandlerTy and a new DiagnosticContext in
the LLVMContext that should be set by the front-end to be able to map these
diagnostics in its own system.
http://llvm-reviews.chandlerc.com/D2376
<rdar://problem/15515174>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197438 91177308-0d34-0410-b5e6-96231b3b80d8
Outputs branch information for unconditional branches in addition to
conditional branches. -b option must be enabled.
Also updated tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197432 91177308-0d34-0410-b5e6-96231b3b80d8
This optional register liveness analysis pass can be enabled with either
-enable-stackmap-liveness, -enable-patchpoint-liveness, or both. The pass
traverses each basic block in a machine function. For each basic block the
instructions are processed in reversed order and if a patchpoint or stackmap
instruction is encountered the current live-out register set is encoded as a
register mask and attached to the instruction.
Later on during stackmap generation the live-out register mask is processed and
also emitted as part of the stackmap.
This information is optional and intended for optimization purposes only. This
will enable a client of the stackmap to reason about the registers it can use
and which registers need to be preserved.
Reviewed by Andy
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197317 91177308-0d34-0410-b5e6-96231b3b80d8
IMHO At some point BasicBlock should be refactored along the lines of
MachineBasicBlock so that successors/weights are actually embedded within the
block. Now is not that time though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197303 91177308-0d34-0410-b5e6-96231b3b80d8
This is slightly more interesting than the previous batch of changes.
Specifically:
1. We refactor getSpillWeight to take a MachineBlockFrequencyInfo (MBFI)
object. This enables us to completely encapsulate the actual manner we
use the MachineBlockFrequencyInfo to get our spill weights. This yields
cleaner code since one does not need to fetch the actual block frequency
before getting the spill weight if all one wants it the spill weight. It
also gives us access to entry frequency which we need for our
computation.
2. Instead of having getSpillWeight take a MachineBasicBlock (as one
might think) to look up the block frequency via the MBFI object, we
instead take in a MachineInstr object. The reason for this is that the
method is supposed to return the spill weight for an instruction
according to the comments around the function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197296 91177308-0d34-0410-b5e6-96231b3b80d8