replace the operands of expressions with only one use with undef and generate
a new expression for the original without using RAUW to update the original.
Thus any copies of the original expression held in a vector may end up
referring to some bogus value - and using a ValueHandle won't help since there
is no RAUW. There is already a mechanism for getting the effect of recursion
non-recursively: adding the value to be recursed on to RedoInsts. But it wasn't
being used systematically. Have various places where recursion had snuck in at
some point use the RedoInsts mechanism instead. Fixes PR12169.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156379 91177308-0d34-0410-b5e6-96231b3b80d8
Added new case-ranges orientated methods for adding/removing cases in SwitchInst. After this patch cases will internally representated as ConstantArray-s instead of ConstantInt, externally cases wrapped within the ConstantRangesSet object.
Old methods of SwitchInst are also works well, but marked as deprecated. So on this stage we have no side effects except that I added support for case ranges in BitcodeReader/Writer, of course test for Bitcode is also added. Old "switch" format is also supported.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156374 91177308-0d34-0410-b5e6-96231b3b80d8
This patch will optimize -(x != 0) on X86
FROM
cmpl $0x01,%edi
sbbl %eax,%eax
notl %eax
TO
negl %edi
sbbl %eax %eax
In order to generate negl, I added patterns in Target/X86/X86InstrCompiler.td:
def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
rdar: 10961709
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156312 91177308-0d34-0410-b5e6-96231b3b80d8
The primitive conservative heuristic seems to give a slight overall
improvement while not regressing stuff. Make it available to wider
testing. If you notice any speed regressions (or significant code
size regressions) let me know!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156258 91177308-0d34-0410-b5e6-96231b3b80d8
This came up when a change in block placement formed a cmov and slowed down a
hot loop by 50%:
ucomisd (%rdi), %xmm0
cmovbel %edx, %esi
cmov is a really bad choice in this context because it doesn't get branch
prediction. If we emit it as a branch, an out-of-order CPU can do a better job
(if the branch is predicted right) and avoid waiting for the slow load+compare
instruction to finish. Of course it won't help if the branch is unpredictable,
but those are really rare in practice.
This patch uses a dumb conservative heuristic, it turns all cmovs that have one
use and a direct memory operand into branches. cmovs usually save some code
size, so we disable the transform in -Os mode. In-Order architectures are
unlikely to benefit as well, those are included in the
"predictableSelectIsExpensive" flag.
It would be better to reuse branch probability info here, but BPI doesn't
support select instructions currently. It would make sense to use the same
heuristics as the if-converter pass, which does the opposite direction of this
transform.
Test suite shows a small improvement here and there on corei7-level machines,
but the actual results depend a lot on the used microarchitecture. The
transformation is currently disabled by default and available by passing the
-enable-cgp-select2branch flag to the code generator.
Thanks to Chandler for the initial test case to him and Evan Cheng for providing
me with comments and test-suite numbers that were more stable than mine :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156234 91177308-0d34-0410-b5e6-96231b3b80d8
The new target machines are:
nvptx (old ptx32) => 32-bit PTX
nvptx64 (old ptx64) => 64-bit PTX
The sources are based on the internal NVIDIA NVPTX back-end, and
contain more functionality than the current PTX back-end currently
provides.
NV_CONTRIB
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156196 91177308-0d34-0410-b5e6-96231b3b80d8
for the assembler and disassembler. Which were not being set/read correctly
for offsets greater than 22 bits in some cases.
Changes to lib/Target/ARM/ARMAsmBackend.cpp from Gideon Myles!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156118 91177308-0d34-0410-b5e6-96231b3b80d8
to catch cases like:
%reg1024<def> = MOV r1
%reg1025<def> = MOV r0
%reg1026<def> = ADD %reg1024, %reg1025
r0 = MOV %reg1026
By commuting ADD, it let coalescer eliminate all of the copies. However, there
was a bug in the heuristics where it ended up commuting the ADD in:
%reg1024<def> = MOV r0
%reg1025<def> = MOV 0
%reg1026<def> = ADD %reg1024, %reg1025
r0 = MOV %reg1026
That did no benefit but rather ensure the last MOV would not be coalesced.
rdar://11355268
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156048 91177308-0d34-0410-b5e6-96231b3b80d8
Expressions for movw/movt don't always have an :upper16: or :lower16:
on them and that's ok. When they don't, it's just a plain [0-65536]
immediate result, effectively the same as a :lower16: variant kind.
rdar://10550147
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155941 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, an unsupported/unknown assembler directive issued a warning.
That's generally unsafe, and inconsistent with the behaviour of pretty
much every system assembler. Now that the MC assemblers are mature
enough to be the default on multiple targets, it's reasonable to
issue errors for these.
For target or platform directives that need to stay warnings, we
should add explicit handlers for them in, e.g., ELFAsmParser.cpp,
DarwinAsmParser.cpp, et. al., and issue the warning there.
rdar://9246275
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155926 91177308-0d34-0410-b5e6-96231b3b80d8