These tests were unnecessarily sensitive to the presence and ordering of
elements in the line table file_names list which will break on a future
change I'm working on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201185 91177308-0d34-0410-b5e6-96231b3b80d8
BUILD_VECTOR nodes, e.g.:
(concat_vectors (BUILD_VECTOR a1, a2, a3, a4), (BUILD_VECTOR b1, b2, b3, b4))
->
(BUILD_VECTOR a1, a2, a3, a4, b1, b2, b3, b4)
This fixes an issue with AVX, where a sequence was not recognized as a 256-bit
vbroadcast due to the concat_vectors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201158 91177308-0d34-0410-b5e6-96231b3b80d8
Xcore target ABI requires const data that is externally visible
to be handled differently if it has C-language linkage rather than
C++ language linkage.
Clang now emits ".cp.rodata" section information.
All other externally visible constant data will be placed in the DP section.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201144 91177308-0d34-0410-b5e6-96231b3b80d8
profitability check due to some other checks in the addressing
mode matcher. I.e., test case for commit r201121.
<rdar://problem/16020230>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201132 91177308-0d34-0410-b5e6-96231b3b80d8
DS instructions that access local memory can only uses addresses that
are less than or equal to the value of M0. When M0 is uninitialized,
then we experience undefined behavior.
This patch also changes the behavior to emit S_WQM_B64 on pixel shaders
no matter what kind of DS instruction is used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201097 91177308-0d34-0410-b5e6-96231b3b80d8
Similarly to the vshrn instructions, these are simple zext/sext + trunc
operations. Using normal LLVM IR should allow for better code, and more sharing
with the AArch64 backend.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201093 91177308-0d34-0410-b5e6-96231b3b80d8
For A- and R-class processors, r12 is not normally callee-saved, but is for
interrupt handlers. See AAPCS, 5.3.1.1, "Use of IP by the linker".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201089 91177308-0d34-0410-b5e6-96231b3b80d8
vshrn is just the combination of a right shift and a truncate (and the limits
on the immediate value actually mean the signedness of the shift doesn't
matter). Using that representation allows us to get rid of an ARM-specific
intrinsic, share more code with AArch64 and hopefully get better code out of
the mid-end optimisers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201085 91177308-0d34-0410-b5e6-96231b3b80d8
This is a small simplification and a small step in fixing pr18743 since
private functions on MachO should be using a 'l' prefix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200994 91177308-0d34-0410-b5e6-96231b3b80d8
Stores of <4 x i64> do work (although they do expand to 4 stores
instead of 2), but 3 x i64 vectors fail to select.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200989 91177308-0d34-0410-b5e6-96231b3b80d8
According to the AAPCS, when a CPRC is allocated to the stack, all other
VFP registers should be marked as unavailable.
I have also modified the rules for allocating non-CPRCs to the stack, to make
it more explicit that all GPRs must be made unavailable. I cannot think of a
case where the old version would produce incorrect answers, so there is no test
for this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200970 91177308-0d34-0410-b5e6-96231b3b80d8
Fix a bug triggered in IfConverterTriangle when CvtBB has multiple predecessors
by getting the weights before removing a successor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200958 91177308-0d34-0410-b5e6-96231b3b80d8
Generalize the AArch64 .td nodes for AssertZext and AssertSext. Use
them to match the relevant pextr store instructions.
The test widen_load-2.ll requires a slight change because with the
stores gone, the remaining instructions are scheduled in a different
order.
Add test cases for SSE4 and AVX variants.
Resolves rdar://13414672.
Patch by Adam Nemet <anemet@apple.com>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200957 91177308-0d34-0410-b5e6-96231b3b80d8
mode.
Basically the idea is to transform code like this:
%idx = add nsw i32 %a, 1
%sextidx = sext i32 %idx to i64
%gep = gep i8* %myArray, i64 %sextidx
load i8* %gep
Into:
%sexta = sext i32 %a to i64
%idx = add nsw i64 %sexta, 1
%gep = gep i8* %myArray, i64 %idx
load i8* %gep
That way the computation can be folded into the addressing mode.
This transformation is done as part of the addressing mode matcher.
If the matching fails (not profitable, addressing mode not legal, etc.), the
matcher will revert the related promotions.
<rdar://problem/15519855>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200947 91177308-0d34-0410-b5e6-96231b3b80d8
There was a problem with the old pattern, so we were copying some
larger immediates into registers when we could have been encoding
them in the instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200932 91177308-0d34-0410-b5e6-96231b3b80d8
During DAGCombine visitShiftByConstant assumes that certain binary operations
with only constant operands can always be folded successfully. This is no longer
true when the constant is opaque. This commit fixes visitShiftByConstant by not
performing the optimization for opaque constants. Otherwise we would end up in
an infinite DAGCombine loop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200900 91177308-0d34-0410-b5e6-96231b3b80d8
find a register.
The idea is to choose a color for the variable that cannot be allocated and
recolor its interferences around. Unlike the current register allocation scheme,
it is allowed to change the color of an already assigned (but maybe not
splittable or spillable) live interval while propagating this change to its
neighbors.
In other word, there are two things that may help finding an available color:
- Already assigned variables (RS_Done) can be recolored to different color.
- The recoloring allows to catch solutions that needs to touch more that just
the neighbors of the current allocated variable.
E.g.,
vA can use {R1, R2 }
vB can use { R2, R3}
vC can use {R1 }
Where vA, vB, and vC cannot be split anymore (they are reloads for instance) and
they all interfere.
vA is assigned R1
vB is assigned R2
vC tries to evict vA but vA is already done.
=> Regular register allocation heuristic fails.
Last chance recoloring kicks in:
vC does as if vA was evicted => vC uses R1.
vC is marked as fixed.
vA needs to find a color.
None are available.
vA cannot evict vC: vC is a fixed virtual register now.
vA does as if vB was evicted => vA uses R2.
vB needs to find a color.
R3 is available.
Recoloring => vC = R1, vA = R2, vB = R3.
<rdar://problem/15947839>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200883 91177308-0d34-0410-b5e6-96231b3b80d8
This patch fixes the ldr-pseudo implementation to work when used in
inline assembly. The fix is to move arm assembler constant pools
from the ARMAsmParser class to the ARMTargetStreamer class.
Previously we kept the assembler generated constant pools in the
ARMAsmParser object. This does not work for inline assembly because
a new parser object is created for each blob of inline assembly.
This patch moves the constant pools to the ARMTargetStreamer class
so that the constant pool will remain alive for the entire code
generation process.
An ARMTargetStreamer class is now required for the arm backend.
There was no existing implementation for MachO, only Asm and ELF.
Instead of creating an empty MachO subclass, we decided to make the
ARMTargetStreamer a non-abstract class and provide default
(llvm_unreachable) implementations for the non constant-pool related
methods.
Differential Revision: http://llvm-reviews.chandlerc.com/D2638
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200777 91177308-0d34-0410-b5e6-96231b3b80d8
The OpenCL specs say: "The vector versions of the math functions operate
component-wise. The description is per-component."
Patch by: Jan Vesely
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200773 91177308-0d34-0410-b5e6-96231b3b80d8
There was an extremely confusing proliferation of LLVM intrinsics to implement
the vacge & vacgt instructions. This combines them all into two polymorphic
intrinsics, shared across both backends.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200768 91177308-0d34-0410-b5e6-96231b3b80d8
Missing braces on if meant we inserted both ARM and Thumb load for a litpool
entry. This didn't end well.
rdar://problem/15959157
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200752 91177308-0d34-0410-b5e6-96231b3b80d8
V_ADD_F32 with source modifier does not produce -0.0 for this. Just
manipulate the sign bit directly instead.
Also add a pattern for (fneg (fabs ...)).
Fixes a bunch of bit encoding piglit tests with radeonsi.
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200743 91177308-0d34-0410-b5e6-96231b3b80d8
A bunch of test cases needed to be cleaned up for this, many my fault -
when implementid imported modules I updated test cases by simply
duplicating the prior metadata field - which wasn't always the empty
metadata entry.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200731 91177308-0d34-0410-b5e6-96231b3b80d8
Some of the SHA instructions take a scalar i32 as one argument (largely because
they work on 160-bit hash fragments). This wasn't reflected in the IR
previously, with ARM and AArch64 choosing different types (<4 x i32> and <1 x
i32> respectively) which was ugly.
This makes all the affected intrinsics take a uniform "i32", allowing them to
become non-polymorphic at the same time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200706 91177308-0d34-0410-b5e6-96231b3b80d8