movw. That is we promote the destination operand to r16. So
%CH = TRUNC_R16_R8 %BP
is emitted as
movw %bp, %cx.
This is incorrect. If %cl is live, it would be clobbered.
Ideally we want to do the opposite, that is emitted it as
movb ??, %ch
But this is not possible since %bp does not have a r8 sub-register.
We are now defining a new register class R16_ which is a subclass of R16
containing only those 16-bit registers that have r8 sub-registers (i.e.
AX - DX). We isel the truncate to two instructions, a MOV16to16_ to copy the
value to the R16_ class, followed by a TRUNC_R16_R8.
Due to bug 770, the register colaescer is not going to coalesce between R16 and
R16_. That will be fixed later so we can eliminate the MOV16to16_. Right now, it
can only be eliminated if we are lucky that source and destination registers are
the same.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@28164 91177308-0d34-0410-b5e6-96231b3b80d8
still a couple missed optimizations, but we now generate all the possible
rlwimis for multiple inserts into the same bitfield. More regression tests
to come.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@28156 91177308-0d34-0410-b5e6-96231b3b80d8
a cast immediately before a PHI node.
This fixes Regression/CodeGen/Generic/2006-05-06-GEP-Cast-Sink-Crash.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@28143 91177308-0d34-0410-b5e6-96231b3b80d8
Make the "fold (and (cast A), (cast B)) -> (cast (and A, B))" transformation
only apply when both casts really will cause code to be generated. If one or
both doesn't, then this xform doesn't remove a cast.
This fixes Transforms/InstCombine/2006-05-06-Infloop.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@28141 91177308-0d34-0410-b5e6-96231b3b80d8
that gets emitted as movl (for r32 to i16, i8) or a movw (for r16 to i8). And
if the destination gets allocated a subregister of the source operand, then
the instruction will not be emitted at all.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@28119 91177308-0d34-0410-b5e6-96231b3b80d8
of cross-block live ranges, and allows the bb-at-a-time selector to always
coallesce these away, at isel time.
This reduces the load on the coallescer and register allocator. For example
on a codec on X86, we went from:
1643 asm-printer - Number of machine instrs printed
419 liveintervals - Number of loads/stores folded into instructions
1144 liveintervals - Number of identity moves eliminated after coalescing
1022 liveintervals - Number of interval joins performed
282 liveintervals - Number of intervals after coalescing
1304 liveintervals - Number of original intervals
86 regalloc - Number of times we had to backtrack
1.90232 regalloc - Ratio of intervals processed over total intervals
40 spiller - Number of values reused
182 spiller - Number of loads added
121 spiller - Number of stores added
132 spiller - Number of register spills
6 twoaddressinstruction - Number of instructions commuted to coalesce
360 twoaddressinstruction - Number of two-address instructions
to:
1636 asm-printer - Number of machine instrs printed
403 liveintervals - Number of loads/stores folded into instructions
1155 liveintervals - Number of identity moves eliminated after coalescing
1033 liveintervals - Number of interval joins performed
279 liveintervals - Number of intervals after coalescing
1312 liveintervals - Number of original intervals
76 regalloc - Number of times we had to backtrack
1.88998 regalloc - Ratio of intervals processed over total intervals
1 spiller - Number of copies elided
41 spiller - Number of values reused
191 spiller - Number of loads added
114 spiller - Number of stores added
128 spiller - Number of register spills
4 twoaddressinstruction - Number of instructions commuted to coalesce
356 twoaddressinstruction - Number of two-address instructions
On this testcase, this change provides a modest reduction in spill code,
regalloc iterations, and total instructions emitted. It increases the number
of register coallesces.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@28115 91177308-0d34-0410-b5e6-96231b3b80d8
scheduler can go into a "vertical mode" (i.e. traversing up the two-address
chain, etc.) when the register pressure is low.
This does seem to reduce the number of spills in the cases I've looked at. But
with x86, it's no guarantee the performance of the code improves.
It can be turned on with -sched-vertically option.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@28108 91177308-0d34-0410-b5e6-96231b3b80d8