When instructions are deleted, they leave tombstone SlotIndex entries.
The isZeroLength method should ignore these null indexes.
This causes RABasic to sometimes spill a callee-saved register in the
abi-isel.ll test, so don't run that test with -regalloc=basic. Prioritizing
register allocation according to spill weight can cause more registers to be
used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131436 91177308-0d34-0410-b5e6-96231b3b80d8
If there is a store after the load node, then there is a chain, which means
that there is another user. Thus, asking hasOneUser would fail. Instead we
ask hasNUsesOfValue on the 'data' value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131183 91177308-0d34-0410-b5e6-96231b3b80d8
landing pad as its successor.
SjLj exception handling jumps to the correct landing pad via a switch statement
that's generated right before code-gen. Loosen the constraint in the machine
instruction verifier to allow for this. Note, this isn't the most rigorous check
since we cannot determine where that switch statement came from. But it's
marginally better than turning this check off when SjLj exceptions are used.
<rdar://problem/9187612>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130881 91177308-0d34-0410-b5e6-96231b3b80d8
model constants which can be added to base registers via add-immediate
instructions which don't require an additional register to materialize
the immediate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130743 91177308-0d34-0410-b5e6-96231b3b80d8
Fix a rather obscure crash caused by ARM fast-isel generating code which redefines a register.
rdar://problem/9338332 .
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130539 91177308-0d34-0410-b5e6-96231b3b80d8
successors) and use inverse depth first search to traverse the BBs. However
that doesn't work when the CFG has infinite loops. Simply do a linear
traversal of all BBs work just fine.
rdar://9344645
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130324 91177308-0d34-0410-b5e6-96231b3b80d8
We cannot rely on the <imp-def> operands added by LiveIntervals in all cases as
demonstrated by the test case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130313 91177308-0d34-0410-b5e6-96231b3b80d8
more callee-saved registers and introduce copies. Only allows it if scheduling
a node above calls would end up lessen register pressure.
Call operands also has added ABI restrictions for register allocation, so be
extra careful with hoisting them above calls.
rdar://9329627
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130245 91177308-0d34-0410-b5e6-96231b3b80d8
Fixes Thumb2 ADCS and SBCS lowering: <rdar://problem/9275821>.
t2ADCS/t2SBCS are now pseudo instructions, consistent with ARM, so the
assembly printer correctly prints the 's' suffix.
Fixes Thumb2 adde -> SBC matching to check for live/dead carry flags.
Fixes the internal ARM machine opcode mnemonic for ADCS/SBCS.
Fixes ARM SBC lowering to check for live carry (potential bug).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130048 91177308-0d34-0410-b5e6-96231b3b80d8
manually and pass all (now) 4 arguments to the mul libcall. Add a new
ExpandLibCall for just this (copied gratuitously from type legalization).
Fixes rdar://9292577
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129842 91177308-0d34-0410-b5e6-96231b3b80d8
- There is a minor semantic change here (evidenced by the test change) for
Darwin triples that have no version component. I debated changing the default
behavior of isOSVersionLT, but decided it made more sense for triples to be
explicit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129802 91177308-0d34-0410-b5e6-96231b3b80d8
Making use of VFP / NEON floating point multiply-accumulate / subtraction is
difficult on current ARM implementations for a few reasons.
1. Even though a single vmla has latency that is one cycle shorter than a pair
of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause
additional pipeline stall. So it's frequently better to single codegen
vmul + vadd.
2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to
stall for 4 cycles. We need to schedule them apart.
3. A vmla followed vmla is a special case. Obvious issuing back to back RAW
vmla + vmla is very bad. But this isn't ideal either:
vmul
vadd
vmla
Instead, we want to expand the second vmla:
vmla
vmul
vadd
Even with the 4 cycle vmul stall, the second sequence is still 2 cycles
faster.
Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough
but it isn't the optimial solution. This patch attempts to make it possible to
use vmla / vmls in cases where it is profitable.
A. Add missing isel predicates which cause vmla to be codegen'ed.
B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to
compute a fmul and a fmla.
C. Add additional isel checks for vmla, avoid cases where vmla is feeding into
fp instructions (except for the #3 exceptional case).
D. Add ARM hazard recognizer to model the vmla / vmls hazards.
E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the
vmla / vmls will trigger one of the special hazards.
Enable these fp vmlx codegen changes for Cortex-A9.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129775 91177308-0d34-0410-b5e6-96231b3b80d8
Add a avoidWriteAfterWrite() target hook to identify register classes that
suffer from write-after-write hazards. For those register classes, try to avoid
writing the same register in two consecutive instructions.
This is currently disabled by default. We should not spill to avoid hazards!
The command line flag -avoid-waw-hazard can be used to enable waw avoidance.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129772 91177308-0d34-0410-b5e6-96231b3b80d8
Ideally, we would match an S-register to its containing D-register, but that
requires arithmetic (divide by 2).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129756 91177308-0d34-0410-b5e6-96231b3b80d8