- Add RTM code generation support throught 3 X86 intrinsics:
xbegin()/xend() to start/end a transaction region, and xabort() to abort a
tranaction region
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167573 91177308-0d34-0410-b5e6-96231b3b80d8
r165941: Resubmit the changes to llvm core to update the functions to
support different pointer sizes on a per address space basis.
Despite this commit log, this change primarily changed stuff outside of
VMCore, and those changes do not carry any tests for correctness (or
even plausibility), and we have consistently found questionable or flat
out incorrect cases in these changes. Most of them are probably correct,
but we need to devise a system that makes it more clear when we have
handled the address space concerns correctly, and ideally each pass that
gets updated would receive an accompanying test case that exercises that
pass specificaly w.r.t. alternate address spaces.
However, from this commit, I have retained the new C API entry points.
Those were an orthogonal change that probably should have been split
apart, but they seem entirely good.
In several places the changes were very obvious cleanups with no actual
multiple address space code added; these I have not reverted when
I spotted them.
In a few other places there were merge conflicts due to a cleaner
solution being implemented later, often not using address spaces at all.
In those cases, I've preserved the new code which isn't address space
dependent.
This is part of my ongoing effort to clean out the partial address space
code which carries high risk and low test coverage, and not likely to be
finished before the 3.2 release looms closer. Duncan and I would both
like to see the above issues addressed before we return to these
changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167222 91177308-0d34-0410-b5e6-96231b3b80d8
The adc/sbb optimization is to able to convert following expression
into a single adc/sbb instruction:
(ult) ... = x + 1 // where the ult is unsigned-less-than comparison
(ult) ... = x - 1
This change is to flip the "x >u y" (i.e. ugt comparison) in order
to expose the adc/sbb opportunity.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167180 91177308-0d34-0410-b5e6-96231b3b80d8
- As there's no 64-bit GPRs in 32-bit mode, a custom conversion from v2u32 to
v2f32 is added to improve the efficiency of the code generated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166545 91177308-0d34-0410-b5e6-96231b3b80d8
- Check index being extracted to be constant 0 before simplfiying.
Otherwise, retain the original sequence.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166504 91177308-0d34-0410-b5e6-96231b3b80d8
- Replace v4i8/v8i8 -> v8f32 DAG combine with custom lowering to reduce
DAG combine overhead.
- Extend the support to v4i16/v8i16 as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166487 91177308-0d34-0410-b5e6-96231b3b80d8
which is supposed to consistently raise SIGTRAP across all systems. In contrast,
__builtin_trap() behave differently on different systems. e.g. it raises SIGTRAP on ARM, and
SIGILL on X86. The purpose of __builtin_debugtrap() is to consistently provide "trap"
functionality, in the mean time preserve the compatibility with on gcc on __builtin_trap().
The X86 backend is already able to handle debugtrap(). This patch is to:
1) make front-end recognize "__builtin_debugtrap()" (emboddied in the one-line change to Clang).
2) In DAG legalization phase, by default, "debugtrap" will be replaced with "trap", which
make the __builtin_debugtrap() "available" to all existing ports without the hassle of
changing their code.
3) If trap-function is specified (via -trap-func=xyz to llc), both __builtin_debugtrap() and
__builtin_trap() will be expanded into the function call of the specified trap function.
This behavior may need change in the future.
The provided testing-case is to make sure 2) and 3) are working for ARM port, and we
already have a testing case for x86.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166300 91177308-0d34-0410-b5e6-96231b3b80d8
- If INSERT_VECTOR_ELT is supported (above SSE2, either by custom
sequence of legal insn), transform BUILD_VECTOR into SHUFFLE +
INSERT_VECTOR_ELT if most of elements could be built from SHUFFLE with few
(so far 1) elements being inserted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166288 91177308-0d34-0410-b5e6-96231b3b80d8
- MBB address is only valid as an immediate value in Small & Static
code/relocation models. On other models, LEA is needed to load IP address of
the restore MBB.
- A minor fix of MBB in MC lowering is added as well to enable target
relocation flag being propagated into MC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166084 91177308-0d34-0410-b5e6-96231b3b80d8
- Add custom FP_TO_SINT on v8i16 (and v8i8 which is legalized as v8i16 due to
vector element-wise widening) to reduce DAG combiner and its overhead added
in X86 backend.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166036 91177308-0d34-0410-b5e6-96231b3b80d8
Original message:
The attached is the fix to radar://11663049. The optimization can be outlined by following rules:
(select (x != c), e, c) -> select (x != c), e, x),
(select (x == c), c, e) -> select (x == c), x, e)
where the <c> is an integer constant.
The reason for this change is that : on x86, conditional-move-from-constant needs two instructions;
however, conditional-move-from-register need only one instruction.
While the LowerSELECT() sounds to be the most convenient place for this optimization, it turns out to be a bad place. The reason is that by replacing the constant <c> with a symbolic value, it obscure some instruction-combining opportunities which would otherwise be very easy to spot. For that reason, I have to postpone the change to last instruction-combining phase.
The change passes the test of "make check-all -C <build-root/test" and "make -C project/test-suite/SingleSource".
Original message since r165661:
My previous change has a bug: I negated the condition code of a CMOV, and go ahead creating a new CMOV using the *ORIGINAL* condition code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166017 91177308-0d34-0410-b5e6-96231b3b80d8
- Besides used in SjLj exception handling, __builtin_setjmp/__longjmp is also
used as a light-weight replacement of setjmp/longjmp which are used to
implementation continuation, user-level threading, and etc. The support added
in this patch ONLY addresses this usage and is NOT intended to support SjLj
exception handling as zero-cost DWARF exception handling is used by default
in X86.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165989 91177308-0d34-0410-b5e6-96231b3b80d8
X86 doesn't have i8 cmovs so isel would emit a branch. Emitting branches at this
level is often not a good idea because it's too late for many optimizations to
kick in. This solution doesn't add any extensions (truncs are free) and tries
to avoid introducing partial register stalls by filtering direct copyfromregs.
I'm seeing a ~10% speedup on reading a random .png file with libpng15 via
graphicsmagick on x86_64/westmere, but YMMV depending on the microarchitecture.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165868 91177308-0d34-0410-b5e6-96231b3b80d8
Original message:
The attached is the fix to radar://11663049. The optimization can be outlined by following rules:
(select (x != c), e, c) -> select (x != c), e, x),
(select (x == c), c, e) -> select (x == c), x, e)
where the <c> is an integer constant.
The reason for this change is that : on x86, conditional-move-from-constant needs two instructions;
however, conditional-move-from-register need only one instruction.
While the LowerSELECT() sounds to be the most convenient place for this optimization, it turns out to be a bad place. The reason is that by replacing the constant <c> with a symbolic value, it obscure some instruction-combining opportunities which would otherwise be very easy to spot. For that reason, I have to postpone the change to last instruction-combining phase.
The change passes the test of "make check-all -C <build-root/test" and "make -C project/test-suite/SingleSource".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165661 91177308-0d34-0410-b5e6-96231b3b80d8
- Due to the current matching vector elements constraints in
ISD::FP_ROUND, rounding from v2f64 to v4f32 (after legalization from
v2f32) is scalarized. Add a customized v2f32 widening to convert it
into a target-specific X86ISD::VFPROUND to work around this
constraints.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165631 91177308-0d34-0410-b5e6-96231b3b80d8
- Due to the current matching vector elements constraints in ISD::FP_EXTEND,
rounding from v2f32 to v2f64 is scalarized. Add a customized v2f32 widening
to convert it into a target-specific X86ISD::VFPEXT to work around this
constraints. This patch also reverts a previous attempt to fix this issue by
recovering the scalarized ISD::FP_EXTEND pattern and thus significantly
reduces the overhead of supporting non-power-2 vector FP extend.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165625 91177308-0d34-0410-b5e6-96231b3b80d8