N32/64 places all variable arguments in integer registers (or on stack),
regardless of their types, but follows calling convention of non-vaarg function
when it handles fixed arguments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144553 91177308-0d34-0410-b5e6-96231b3b80d8
argument registers on the callee's stack frame, along with functions that set
and get it.
It is not necessary to add the size of this area when computing stack size in
emitPrologue, since it has already been accounted for in
PEI::calculateFrameObjectOffsets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144549 91177308-0d34-0410-b5e6-96231b3b80d8
cleans up all the chains allocated during the processing of each
function so that for very large inputs we don't just grow memory usage
without bound.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144533 91177308-0d34-0410-b5e6-96231b3b80d8
tests when I forcibly enabled block placement.
It is apparantly possible for an unanalyzable block to fallthrough to
a non-loop block. I don't actually beleive this is correct, I believe
that 'canFallThrough' is returning true needlessly for the code
construct, and I've left a bit of a FIXME on the verification code to
try to track down why this is coming up.
Anyways, removing the assert doesn't degrade the correctness of the algorithm.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144532 91177308-0d34-0410-b5e6-96231b3b80d8
this pass. We're leaving already merged blocks on the worklist, and
scanning them again and again only to determine each time through that
indeed they aren't viable. We can instead remove them once we're going
to have to scan the worklist. This is the easy way to implement removing
them. If this remains on the profile (as I somewhat suspect it will), we
can get a lot more clever here, as the worklist's order is essentially
irrelevant. We can use swapping and fold the two loops to reduce
overhead even when there are many blocks on the worklist but only a few
of them are removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144531 91177308-0d34-0410-b5e6-96231b3b80d8
time it is queried to compute the probability of a single successor.
This makes computing the probability of every successor of a block in
sequence... really really slow. ;] This switches to a linear walk of the
successors rather than a quadratic one. One of several quadratic
behaviors slowing this pass down.
I'm not really thrilled with moving the sum code into the public
interface of MBPI, but I don't (at the moment) have ideas for a better
interface. My direction I'm thinking in for a better interface is to
have MBPI actually retain much more state and make *all* of these
queries cheap. That's a lot of work, and would require invasive changes.
Until then, this seems like the least bad (ie, least quadratic)
solution. Suggestions welcome.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144530 91177308-0d34-0410-b5e6-96231b3b80d8
correctly handle blocks whose successor weights sum to more than
UINT32_MAX. This is slightly less efficient, but the entire thing is
already linear on the number of successors. Calling it within any hot
routine is a mistake, and indeed no one is calling it. It also
simplifies the code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144527 91177308-0d34-0410-b5e6-96231b3b80d8
the sum of the edge weights not overflowing uint32, and crashed when
they did. This is generally safe as BranchProbabilityInfo tries to
provide this guarantee. However, the CFG can get modified during codegen
in a way that grows the *sum* of the edge weights. This doesn't seem
unreasonable (imagine just adding more blocks all with the default
weight of 16), but it is hard to come up with a case that actually
triggers 32-bit overflow. Fortuately, the single-source GCC build is
good at this. The solution isn't very pretty, but its no worse than the
previous code. We're already summing all of the edge weights on each
query, we can sum them, check for an overflow, compute a scale, and sum
them again.
I've included a *greatly* reduced test case out of the GCC source that
triggers it. It's a pretty lame test, as it clearly is just barely
triggering the overflow. I'd like to have something that is much more
definitive, but I don't understand the fundamental pattern that triggers
an explosion in the edge weight sums.
The buggy code is duplicated within this file. I'll colapse them into
a single implementation in a subsequent commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144526 91177308-0d34-0410-b5e6-96231b3b80d8
expensive the most useful interface to this analysis is.
Fun story -- it's also not correct. That's getting fixed in another
patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144523 91177308-0d34-0410-b5e6-96231b3b80d8
get loop info structures associated with them, and so we need some way
to make forward progress selecting and placing basic blocks. The
technique used here is pretty brutal -- it just scans the list of blocks
looking for the first unplaced candidate. It keeps placing blocks like
this until the CFG becomes tractable.
The cost is somewhat unfortunate, it requires allocating a vector of all
basic block pointers eagerly. I have some ideas about how to simplify
and optimize this, but I'm trying to get the logic correct first.
Thanks to Benjamin Kramer for the reduced test case out of GCC. Sadly
there are other bugs that GCC is tickling that I'm reducing and working
on now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144516 91177308-0d34-0410-b5e6-96231b3b80d8
This makes no difference for normal defs, but early clobber dead defs
now look like:
[Slot_EarlyClobber; Slot_Dead)
instead of:
[Slot_EarlyClobber; Slot_Register).
Live ranges for normal dead defs look like:
[Slot_Register; Slot_Dead)
as before.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144512 91177308-0d34-0410-b5e6-96231b3b80d8
when we fail to place all the blocks of a loop. Currently this is
happening for unnatural loops, and this logic helps more immediately
point to the problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144504 91177308-0d34-0410-b5e6-96231b3b80d8
The old naming scheme (load/use/def/store) can be traced back to an old
linear scan article, but the names don't match how slots are actually
used.
The load and store slots are not needed after the deferred spill code
insertion framework was deleted.
The use and def slots don't make any sense because we are using
half-open intervals as is customary in C code, but the names suggest
closed intervals. In reality, these slots were used to distinguish
early-clobber defs from normal defs.
The new naming scheme also has 4 slots, but the names match how the
slots are really used. This is a purely mechanical renaming, but some
of the code makes a lot more sense now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144503 91177308-0d34-0410-b5e6-96231b3b80d8
branches that also may involve fallthrough. In the case of blocks with
no fallthrough, we can still re-order the blocks profitably. For example
instruction decoding will in some cases continue past an indirect jump,
making laying out its most likely successor there profitable.
Note, no test case. I don't know how to write a test case that exercises
this logic, but it matches the described desired semantics in
discussions with Jakob and others. If anyone has a nice example of IR
that will trigger this, that would be lovely.
Also note, there are still assertion failures in real world code with
this. I'm digging into those next, now that I know this isn't the cause.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144499 91177308-0d34-0410-b5e6-96231b3b80d8
second algorithm, but only loosely. It is more heavily based on the last
discussion I had with Andy. It continues to walk from the inner-most
loop outward, but there is a key difference. With this algorithm we
ensure that as we visit each loop, the entire loop is merged into
a single chain. At the end, the entire function is treated as a "loop",
and merged into a single chain. This chain forms the desired sequence of
blocks within the function. Switching to a single algorithm removes my
biggest problem with the previous approaches -- they had different
behavior depending on which system triggered the layout. Now there is
exactly one algorithm and one basis for the decision making.
The other key difference is how the chain is formed. This is based
heavily on the idea Andy mentioned of keeping a worklist of blocks that
are viable layout successors based on the CFG. Having this set allows us
to consistently select the best layout successor for each block. It is
expensive though.
The code here remains very rough. There is a lot that needs to be done
to clean up the code, and to make the runtime cost of this pass much
lower. Very much WIP, but this was a giant chunk of code and I'd rather
folks see it sooner than later. Everything remains behind a flag of
course.
I've added a couple of tests to exercise the issues that this iteration
was motivated by: loop structure preservation. I've also fixed one test
that was exhibiting the broken behavior of the previous version.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144495 91177308-0d34-0410-b5e6-96231b3b80d8
SimplifyAddress to handle either a 12-bit unsigned offset or the ARM +/-imm8
offsets (addressing mode 3). This enables a load followed by an integer
extend to be folded into a single load.
For example:
ldrb r1, [r0] ldrb r1, [r0]
uxtb r2, r1 =>
mov r3, r2 mov r3, r1
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144488 91177308-0d34-0410-b5e6-96231b3b80d8
Most of this stuff was supporting the old deferred spill code insertion
mechanism. Modern spillers just edit machine code in place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144484 91177308-0d34-0410-b5e6-96231b3b80d8
It was off by default.
The new register allocators don't have the problems that made it
necessary to reallocate registers during stack slot coloring.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144481 91177308-0d34-0410-b5e6-96231b3b80d8