This speeds up llvm-ar building lib64/libclangSema.a with debug IR files
from 8.658015807 seconds to just 0.351036519 seconds :-)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232221 91177308-0d34-0410-b5e6-96231b3b80d8
This happened to be fairly easy to support backwards compatibility based
on the number of operands (old format had an even number, new format has
one more operand so an odd number).
test/Bitcode/old-aliases.ll already appears to test old gep operators
(if I remove the backwards compatibility in the BitcodeReader, this and
another test fail) so I'm not adding extra test coverage here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232216 91177308-0d34-0410-b5e6-96231b3b80d8
The operand flag word for ISD::INLINEASM nodes now contains a 15-bit
memory constraint ID when the operand kind is Kind_Mem. This constraint
ID is a numeric equivalent to the constraint code string and is converted
with a target specific hook in TargetLowering.
This patch maps all memory constraints to InlineAsm::Constraint_m so there
is no functional change at this point. It just proves that using these
previously unused bits in the encoding of the flag word doesn't break
anything.
The next patch will make each target preserve the current mapping of
everything to Constraint_m for itself while changing the target independent
implementation of the hook to return Constraint_Unknown appropriately. Each
target will then be adapted in separate patches to use appropriate
Constraint_* values.
PR22883 was caused the matching operands copying the whole of the operand flags
for the matched operand. This included the constraint id which needed to be
replaced with the operand number. This has been fixed with a conversion
function. Following on from this, matching operands also used the operand
number as the constraint id. This has been fixed by looking up the matched
operand and taking it from there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232165 91177308-0d34-0410-b5e6-96231b3b80d8
This should complete the job started in r231794 and continued in r232045:
We want to replace as much custom x86 shuffling via intrinsics
as possible because pushing the code down the generic shuffle
optimization path allows for better codegen and less complexity
in LLVM.
AVX2 introduced proper integer variants of the hacked integer insert/extract
C intrinsics that were created for this same functionality with AVX1.
This should complete the removal of insert/extract128 intrinsics.
The Clang precursor patch for this change was checked in at r232109.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232120 91177308-0d34-0410-b5e6-96231b3b80d8
This (r232027) has caused PR22883; so it seems those bits might be used by
something else after all. Reverting until we can figure out what else to do.
Original commit message:
The operand flag word for ISD::INLINEASM nodes now contains a 15-bit
memory constraint ID when the operand kind is Kind_Mem. This constraint
ID is a numeric equivalent to the constraint code string and is converted
with a target specific hook in TargetLowering.
This patch maps all memory constraints to InlineAsm::Constraint_m so there
is no functional change at this point. It just proves that using these
previously unused bits in the encoding of the flag word doesn't break anything.
The next patch will make each target preserve the current mapping of
everything to Constraint_m for itself while changing the target independent
implementation of the hook to return Constraint_Unknown appropriately. Each
target will then be adapted in separate patches to use appropriate Constraint_*
values.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232093 91177308-0d34-0410-b5e6-96231b3b80d8
Now that we've replaced the vinsertf128 intrinsics,
do the same for their extract twins.
This is very much like D8086 (checked in at r231794):
We want to replace as much custom x86 shuffling via intrinsics
as possible because pushing the code down the generic shuffle
optimization path allows for better codegen and less complexity
in LLVM.
This is also the LLVM sibling to the cfe D8275 patch.
Differential Revision: http://reviews.llvm.org/D8276
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232045 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The operand flag word for ISD::INLINEASM nodes now contains a 15-bit
memory constraint ID when the operand kind is Kind_Mem. This constraint
ID is a numeric equivalent to the constraint code string and is converted
with a target specific hook in TargetLowering.
This patch maps all memory constraints to InlineAsm::Constraint_m so there
is no functional change at this point. It just proves that using these
previously unused bits in the encoding of the flag word doesn't break anything.
The next patch will make each target preserve the current mapping of
everything to Constraint_m for itself while changing the target independent
implementation of the hook to return Constraint_Unknown appropriately. Each
target will then be adapted in separate patches to use appropriate Constraint_*
values.
Reviewers: hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D8171
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232027 91177308-0d34-0410-b5e6-96231b3b80d8
These docs *don't* match the way WinEHPrepare uses them yet, and
verifier support isn't implemented either. The implementation will come
after the documentation text is reviewed and agreed upon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232003 91177308-0d34-0410-b5e6-96231b3b80d8
We want to replace as much custom x86 shuffling via intrinsics
as possible because pushing the code down the generic shuffle
optimization path allows for better codegen and less complexity
in LLVM.
This is the sibling patch for the Clang half of this change:
http://reviews.llvm.org/D8088
Differential Revision: http://reviews.llvm.org/D8086
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231794 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Now that the DataLayout is a mandatory part of the module, let's start
cleaning the codebase. This patch is a first attempt at doing that.
This patch is not exactly NFC as for instance some places were passing
a nullptr instead of the DataLayout, possibly just because there was a
default value on the DataLayout argument to many functions in the API.
Even though it is not purely NFC, there is no change in the
validation.
I turned as many pointer to DataLayout to references, this helped
figuring out all the places where a nullptr could come up.
I had initially a local version of this patch broken into over 30
independant, commits but some later commit were cleaning the API and
touching part of the code modified in the previous commits, so it
seemed cleaner without the intermediate state.
Test Plan:
Reviewers: echristo
Subscribers: llvm-commits
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231740 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
See the two test cases.
; Can fold fcmp with undef on one side by choosing NaN for the undef
; Can fold fcmp with undef on both side
; fcmp u_pred undef, undef -> true
; fcmp o_pred undef, undef -> false
; because whatever you choose for the first undef
; you can choose NaN for the other undef
Reviewers: hfinkel, chandlerc, majnemer
Reviewed By: majnemer
Subscribers: majnemer, llvm-commits
Differential Revision: http://reviews.llvm.org/D7617
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231626 91177308-0d34-0410-b5e6-96231b3b80d8
Multiplication is not dependent on signedness, so just treating
all input ranges as unsigned is not incorrect. However it will cause
overly pessimistic ranges (such as full-set) when used with signed
negative values.
Teach multiply to try to interpret its inputs as both signed and
unsigned, and then to take the most specific (smallest population)
as its result.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231483 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
DataLayout keeps the string used for its creation.
As a side effect it is no longer needed in the Module.
This is "almost" NFC, the string is no longer
canonicalized, you can't rely on two "equals" DataLayout
having the same string returned by getStringRepresentation().
Get rid of DataLayoutPass: the DataLayout is in the Module
The DataLayout is "per-module", let's enforce this by not
duplicating it more than necessary.
One more step toward non-optionality of the DataLayout in the
module.
Make DataLayout Non-Optional in the Module
Module->getDataLayout() will never returns nullptr anymore.
Reviewers: echristo
Subscribers: resistor, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D7992
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231270 91177308-0d34-0410-b5e6-96231b3b80d8
The intrinsic is no longer generated by the front-end. Remove the intrinsic and
auto-upgrade it to a vector shuffle.
Reviewed by Nadav
This is related to rdar://problem/18742778.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231182 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This does not conceptually belongs here. Instead provide a shortcut
getModule() that provides access to the DataLayout.
Reviewers: chandlerc, echristo
Reviewed By: echristo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8027
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231147 91177308-0d34-0410-b5e6-96231b3b80d8
I removed the copy ctor, thinking that'd be the end of it - these
iterators should be perfectly assignable even from disjoint ranges (as
any iterator would be) - exkcept that the member was const.
Unconstify it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231146 91177308-0d34-0410-b5e6-96231b3b80d8
There's no reason to disallow assigning an iterator from one range to an
iterator that previously iterated over a disjoint range. This then
follows the Rule of Zero, allowing implicit copy construction to be used
without hitting the case that's deprecated in C++11.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231142 91177308-0d34-0410-b5e6-96231b3b80d8
Accidentally committed a few more of these cleanup changes than
intended. Still breaking these out & tidying them up.
This reverts commit r231135.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231136 91177308-0d34-0410-b5e6-96231b3b80d8
There doesn't seem to be any need to assert that iterator assignment is
between iterators over the same node - if you want to reuse an iterator
variable to iterate another node, that's perfectly acceptable. Just
don't mix comparisons between iterators into disjoint sequences, as
usual.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231135 91177308-0d34-0410-b5e6-96231b3b80d8
Ultimately, __CxxFrameHandler3 needs us to put a stack offset in a
table, and it will take responsibility for copying the exception object
into that slot. Modelling the exception object as an SSA value returned
by begincatch isn't going to work in general, so make it use an output
parameter.
Reviewers: andrew.w.kaylor
Differential Revision: http://reviews.llvm.org/D7920
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231086 91177308-0d34-0410-b5e6-96231b3b80d8
Move the specialized metadata nodes for the new debug info hierarchy
into place, finishing off PR22464. I've done bootstraps (and all that)
and I'm confident this commit is NFC as far as DWARF output is
concerned. Let me know if I'm wrong :).
The code changes are fairly mechanical:
- Bumped the "Debug Info Version".
- `DIBuilder` now creates the appropriate subclass of `MDNode`.
- Subclasses of DIDescriptor now expect to hold their "MD"
counterparts (e.g., `DIBasicType` expects `MDBasicType`).
- Deleted a ton of dead code in `AsmWriter.cpp` and `DebugInfo.cpp`
for printing comments.
- Big update to LangRef to describe the nodes in the new hierarchy.
Feel free to make it better.
Testcase changes are enormous. There's an accompanying clang commit on
its way.
If you have out-of-tree debug info testcases, I just broke your build.
- `upgrade-specialized-nodes.sh` is attached to PR22564. I used it to
update all the IR testcases.
- Unfortunately I failed to find way to script the updates to CHECK
lines, so I updated all of these by hand. This was fairly painful,
since the old CHECKs are difficult to reason about. That's one of
the benefits of the new hierarchy.
This work isn't quite finished, BTW. The `DIDescriptor` subclasses are
almost empty wrappers, but not quite: they still have loose casting
checks (see the `RETURN_FROM_RAW()` macro). Once they're completely
gutted, I'll rename the "MD" classes to "DI" and kill the wrappers. I
also expect to make a few schema changes now that it's easier to reason
about everything.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231082 91177308-0d34-0410-b5e6-96231b3b80d8
Add the final bits of API that `DIBuilder` needs before the new nodes
can be moved into place.
- Add `MDType::clone()` and `MDType::setFlags()` to support
`DIBuilder::createTypeWithFlags()`.
- Add `MDBasicType::get()` overload that just requires a tag and a
name, as a convenience for `DIBuilder::createUnspecifiedType()`.
- Add `MDLocalVariable::withInline()` and
`MDLocalVariable::withoutInline()` to support
`llvm::createInlinedVariable()` and
`llvm::cleanseInlinedVariable()`.
(Somehow these got lost inside the "move into place" patch I'm about to
commit -- better to commit separately!)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231079 91177308-0d34-0410-b5e6-96231b3b80d8
Fix `MDScope::getFile()` so that it correctly returns a valid `MDFile`
even when it's an instance of `MDFile`. This logic is necessary because
of r230057. I'm working on moving the new hierarchy into place
out-of-tree (on track to commit Monday morning, BTW), and this was
exposed by a few failing tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230871 91177308-0d34-0410-b5e6-96231b3b80d8
AnalysisResult::getResultImpl reuses an iterator into a DenseMap after
inserting elements into it. This change adds code to recompute the
iterator before the second use.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230718 91177308-0d34-0410-b5e6-96231b3b80d8
Use the IRBuilder helpers for gc.statepoint and gc.result, instead of
coding the construction by hand. Note that the gc.statepoint IRBuilder
handles only CallInst, not InvokeInst; retain that part of hand-coding.
Differential Revision: http://reviews.llvm.org/D7518
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230591 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change fixes the FIXME that you recently added when you committed
(a modified version of) my patch. When `InstCombine` combines a load and
store of an pointer to those of an equivalently-sized integer, it currently
drops any `!nonnull` metadata that might be present. This change replaces
`!nonnull` metadata with `!range !{ 1, -1 }` metadata instead.
Reviewers: chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7621
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230462 91177308-0d34-0410-b5e6-96231b3b80d8
Like r230414, add bitcode support including backwards compatibility, for
an explicit type parameter to GEP.
At the suggestion of Duncan I tried coalescing the two older bitcodes into a
single new bitcode, though I did hit a wrinkle: I couldn't figure out how to
create an explicit abbreviation for a record with a variable number of
arguments (the indicies to the gep). This means the discriminator between
inbounds and non-inbounds gep is a full variable-length field I believe? Is my
understanding correct? Is there a way to create such an abbreviation? Should I
just use two bitcodes as before?
Reviewers: dexonsmith
Differential Revision: http://reviews.llvm.org/D7736
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230415 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for the QPX vector instruction set, which is used by the
enhanced A2 cores on the IBM BG/Q supercomputers. QPX vectors are 256 bytes
wide, holding 4 double-precision floating-point values. Boolean values, modeled
here as <4 x i1> are actually also represented as floating-point values
(essentially { -1, 1 } for { false, true }). QPX shares many features with
Altivec and VSX, but is distinct from both of them. One major difference is
that, instead of adding completely-separate vector registers, QPX vector
registers are extensions of the scalar floating-point registers (lane 0 is the
corresponding scalar floating-point value). The operations supported on QPX
vectors mirrors that supported on the scalar floating-point values (with some
additional ones for permutations and logical/comparison operations).
I've been maintaining this support out-of-tree, as part of the bgclang project,
for several years. This is not the entire bgclang patch set, but is most of the
subset that can be cleanly integrated into LLVM proper at this time. Adding
this to the LLVM backend is part of my efforts to rebase bgclang to the current
LLVM trunk, but is independently useful (especially for codes that use LLVM as
a JIT in library form).
The assembler/disassembler test coverage is complete. The CodeGen test coverage
is not, but I've included some tests, and more will be added as follow-up work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230413 91177308-0d34-0410-b5e6-96231b3b80d8