(The change was landed in r230280 and caused the regression PR22674.
This version contains a fix and a test-case for PR22674).
When emitting the increment operation, SCEVExpander marks the
operation as nuw or nsw based on the flags on the preincrement SCEV.
This is incorrect because, for instance, it is possible that {-6,+,1}
is <nuw> while {-6,+,1}+1 = {-5,+,1} is not.
This change teaches SCEV to mark the increment as nuw/nsw only if it
can explicitly prove that the increment operation won't overflow.
Apart from the attached test case, another (more realistic)
manifestation of the bug can be seen in
Transforms/IndVarSimplify/pr20680.ll.
Differential Revision: http://reviews.llvm.org/D7778
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230533 91177308-0d34-0410-b5e6-96231b3b80d8
The reason why these large shift sizes happen is because OpaqueConstants
currently inhibit alot of DAG combining, but that has to be addressed in
another commit (like the proposal in D6946).
Differential Revision: http://reviews.llvm.org/D6940
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230355 91177308-0d34-0410-b5e6-96231b3b80d8
When emitting the increment operation, SCEVExpander marks the
operation as nuw or nsw based on the flags on the preincrement SCEV.
This is incorrect because, for instance, it is possible that {-6,+,1}
is <nuw> while {-6,+,1}+1 = {-5,+,1} is not.
This change teaches SCEV to mark the increment as nuw/nsw only if it
can explicitly prove that the increment operation won't overflow.
Apart from the attached test case, another (more realistic) manifestation
of the bug can be seen in Transforms/IndVarSimplify/pr20680.ll.
NOTE: this change was landed with an incorrect commit message in
rL230275 and was reverted for that reason in rL230279. This commit
message is the correct one.
Differential Revision: http://reviews.llvm.org/D7778
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230280 91177308-0d34-0410-b5e6-96231b3b80d8
230275 got committed with an incorrect commit message due to a mixup
on my side. Will re-land in a few moments with the correct commit
message.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230279 91177308-0d34-0410-b5e6-96231b3b80d8
The bug was a result of getPreStartForExtend interpreting nsw/nuw
flags on an add recurrence more strongly than is legal. {S,+,X}<nsw>
implies S+X is nsw only if the backedge of the loop is taken at least
once.
Differential Revision: http://reviews.llvm.org/D7808
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230275 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a safe interface to the machine independent InputArg struct
for accessing the index of the original (IR-level) argument. When a
non-native return type is lowered, we generate the hidden
machine-level sret argument on-the-fly. Before this fix, we were
representing this argument as OrigArgIndex == 0, which is an outright
lie. In particular this crashed in the AArch64 backend where we
actually try to access the type of the original argument.
Now we use a sentinel value for machine arguments that have no
original argument index. AArch64, ARM, Mips, and PPC now check for this
case before accessing the original argument.
Fixes <rdar://19792160> Null pointer assertion in AArch64TargetLowering
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229413 91177308-0d34-0410-b5e6-96231b3b80d8
directly into blends of the splats.
These patterns show up even very late in the vector shuffle lowering
where we don't have any chance for DAG combining to kick in, and
blending is a tremendously simpler operation to model. By coercing the
shuffle into a blend we can much more easily match and lower shuffles of
splats.
Immediately with this change there are significantly more blends being
matched in the x86 vector shuffle lowering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229308 91177308-0d34-0410-b5e6-96231b3b80d8
Up the phi node folding threshold from a cheap "1" to a meagre "2".
Update tests for extra added selects and slight code churn.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229099 91177308-0d34-0410-b5e6-96231b3b80d8
We used to do this DAG combine, but it's not always correct:
If the first fp_round isn't a value preserving truncation, it might
introduce a tie in the second fp_round, that wouldn't occur in the
single-step fp_round we want to fold to.
In other words, double rounding isn't the same as rounding.
Differential Revision: http://reviews.llvm.org/D7571
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228911 91177308-0d34-0410-b5e6-96231b3b80d8
analysis.
We're already using TTI in SimplifyCFG, so remove the hard-baked "cheapness"
heuristic and use TTI directly. Generally NFC intended, but we're using a slightly
different heuristic now so there is a slight test churn.
Test changes:
* combine-comparisons-by-cse.ll: Removed unneeded branch check.
* 2014-08-04-muls-it.ll: Test now doesn't branch but emits muleq.
* coalesce-subregs.ll: Superfluous block check.
* 2008-01-02-hoist-fp-add.ll: fadd is safe to speculate. Change to udiv.
* PhiBlockMerge.ll: Superfluous CFG checking code. Main checks still present.
* select-gep.ll: A variable GEP is not expensive, just TCC_Basic, according to the TTI.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228826 91177308-0d34-0410-b5e6-96231b3b80d8
While various DAG combines try to guarantee that a vector SETCC
operation will have the same output size as input, there's nothing
intrinsic to either creation or LegalizeTypes that actually guarantees
it, so the function needs to be ready to handle a mismatch.
Fortunately this is easy enough, just extend or truncate the naturally
compared result.
I couldn't reproduce the failure in other backends that I know have
SIMD, so it's probably only an issue for these two due to shared
heritage.
Should fix PR21645.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228518 91177308-0d34-0410-b5e6-96231b3b80d8
Avoid the creation of select instructions which can result in different
scheduling of the selects.
I also added a bunch of additional store volatiles. Those avoid A
CodeGen problem (bug?) where normalizes and denomarlizing the control
moves all shift instructions into the first block where ISel can't match
them together with the cmps.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228362 91177308-0d34-0410-b5e6-96231b3b80d8
In case CSE reuses a previoulsy unused register the dead-def flag has to
be cleared on the def operand, as exposed by the arm64-cse.ll test.
This fixes PR22439 and the corresponding rdar://19694987
Differential Revision: http://reviews.llvm.org/D7395
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228178 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, Cortex-A72 is modelled as an Cortex-A57 except the fp
load balancing pass isn't enabled for Cortex-A72 as it's not
profitable to have it enabled for this core.
Patch by Ranjeet Singh.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228140 91177308-0d34-0410-b5e6-96231b3b80d8
Some of those didn't even have run lines: they were removed
inadvertently during the Great Merge of 2014.
They used to check for DUPs, but now we go through W-regs?
Filed PR22418 for that potential regression.
For now, just make the tests explicit, so we now where we stand.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227635 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds the missing LD[U]RSW variants to the load store optimizer, so
that we generate LDPSW when possible.
<rdar://problem/19583480>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226978 91177308-0d34-0410-b5e6-96231b3b80d8
AAPCS64 says that it's up to the platform to specify whether x18 is
reserved, and a first step on that way is to add a flag controlling
it.
From: Andrew Turner <andrew@fubar.geek.nz>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226664 91177308-0d34-0410-b5e6-96231b3b80d8
This commit moves `MDLocation`, finishing off PR21433. There's an
accompanying clang commit for frontend testcases. I'll attach the
testcase upgrade script I used to PR21433 to help out-of-tree
frontends/backends.
This changes the schema for `DebugLoc` and `DILocation` from:
!{i32 3, i32 7, !7, !8}
to:
!MDLocation(line: 3, column: 7, scope: !7, inlinedAt: !8)
Note that empty fields (line/column: 0 and inlinedAt: null) don't get
printed by the assembly writer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226048 91177308-0d34-0410-b5e6-96231b3b80d8
Even thouh gcc produces simialr instructions as Owen pointed out the two patterns aren’t equivalent in the case
where the original subtraction could have caused an overflow.
Reverting the same.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225341 91177308-0d34-0410-b5e6-96231b3b80d8
We used to generate code similar to:
umov.b w8, v0[2]
strb w8, [x0, x1]
because the STR*ro* patterns were preferred to ST1*.
Instead, we can avoid going through GPRs, and generate:
add x8, x0, x1
st1.b { v0 }[2], [x8]
This patch increases the ST1* AddedComplexity to achieve that.
rdar://16372710
Differential Revision: http://reviews.llvm.org/D6202
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225183 91177308-0d34-0410-b5e6-96231b3b80d8
For 0-lane stores, we used to generate code similar to:
fmov w8, s0
str w8, [x0, x1, lsl #2]
instead of:
str s0, [x0, x1, lsl #2]
To correct that: for store lane 0 patterns, directly match to STR <subreg>0.
Byte-sized instructions don't have the special case for a 0 index,
because FPR8s are defined to have untyped content.
rdar://16372710
Differential Revision: http://reviews.llvm.org/D6772
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225181 91177308-0d34-0410-b5e6-96231b3b80d8
Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224257 91177308-0d34-0410-b5e6-96231b3b80d8
In the large code model we have to first get the address of the GOT entry, load
the address of the constant, and then load the constant itself.
To avoid these loads and the GOT entry alltogether this commit changes the way
how FP constants are materialized in the large code model. The constats are now
materialized in a GPR and then bitconverted/moved into the FPR.
Reviewed by Tim Northover
Fixes rdar://problem/16572564.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223941 91177308-0d34-0410-b5e6-96231b3b80d8
The load/store value type is currently not available when lowering the memcpy
intrinsic. Add the missing nullptr check to support this in 'computeAddress'.
Fixes rdar://problem/19178947.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223818 91177308-0d34-0410-b5e6-96231b3b80d8
This optimization transforms code like:
bb1:
%0 = icmp ne i32 %a, 0
%1 = icmp ne i32 %b, 0
%or.cond = or i1 %0, %1
br i1 %or.cond, label %TrueBB, label %FalseBB
into a multiple branch instructions like:
bb1:
%0 = icmp ne i32 %a, 0
br i1 %0, label %TrueBB, label %bb2
bb2:
%1 = icmp ne i32 %b, 0
br i1 %1, label %TrueBB, label %FalseBB
This optimization is already performed by SelectionDAG, but not by FastISel.
FastISel cannot perform this optimization, because it cannot generate new
MachineBasicBlocks.
Performing this optimization at CodeGenPrepare time makes it available to both -
SelectionDAG and FastISel - and the implementation in SelectiuonDAG could be
removed. There are currenty a few differences in codegen for X86 and PPC, so
this commmit only enables it for FastISel.
Reviewed by Jim Grosbach
This fixes rdar://problem/19034919.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223786 91177308-0d34-0410-b5e6-96231b3b80d8
A global variable without an explicit alignment specified should be assumed to
be ABI-aligned according to its type, like on other platforms. This allows us
to use better memory operations when accessing it.
rdar://18533701
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223180 91177308-0d34-0410-b5e6-96231b3b80d8
This frequently leads to cases like:
ldr xD, [xN, :lo12:var]
add xA, xN, :lo12:var
ldr xD, [xA, #8]
where the ADD would have been needed anyway, and the two distinct addressing
modes can prevent the formation of an ldp. Because of how we handle ADRP
(aggressively forming an ADRP/ADD pseudo-inst at ISel time), this pattern also
results in duplicated ADRP instructions (one on its own to cover the ldr, and
one combined with the add).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223172 91177308-0d34-0410-b5e6-96231b3b80d8
Reduce the number of nops emitted for stackmap shadows on AArch64 by counting
non-stackmap instructions up to the next branch target towards the requested
shadow.
<rdar://problem/14959522>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223156 91177308-0d34-0410-b5e6-96231b3b80d8
Go through implicit defs of CSMI and MI, and clear the kill flags on
their uses in all the instructions between CSMI and MI.
We might have made some of the kill flags redundant, consider:
subs ... %NZCV<imp-def> <- CSMI
csinc ... %NZCV<imp-use,kill> <- this kill flag isn't valid anymore
subs ... %NZCV<imp-def> <- MI, to be eliminated
csinc ... %NZCV<imp-use,kill>
Since we eliminated MI, and reused a register imp-def'd by CSMI
(here %NZCV), that register, if it was killed before MI, should have
that kill flag removed, because it's lifetime was extended.
Also, add an exhaustive testcase for the motivating example.
Reviewed by: Juergen Ributzka <juergen@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223133 91177308-0d34-0410-b5e6-96231b3b80d8
The blocking code originated in ARM, which is more aggressive about casting
types to a canonical representative before doing anything else, so I missed out
most vector HFAs and broke the ABI. This should fix it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223126 91177308-0d34-0410-b5e6-96231b3b80d8
r208210 introduced an optimization that improves the vector select
codegen by doing the setcc on vectors directly.
This is a problem they the setcc operands are i1s, because the
optimization would create vectors of i1, which aren't legal.
Part of PR21549.
Differential Revision: http://reviews.llvm.org/D6308
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223075 91177308-0d34-0410-b5e6-96231b3b80d8
r213378 improved f16 bitcasts, so that they go directly through subregs,
instead of through the stack. That code now causes an assertion failure
for bitcasts from other 16-bits types (most importantly v2i8).
Correct that by doing the custom lowering for i16 bitcasts only when the
input is an f16.
Part of PR21549.
Differential Revision: http://reviews.llvm.org/D6307
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223074 91177308-0d34-0410-b5e6-96231b3b80d8
The MachineVerifier used to check that there was always exactly one
unconditional branch to a non-landingpad (normal) successor.
If that normal successor to an invoke BB is unreachable, it seems
reasonable to only have one successor, the landing pad.
On targets other than AArch64 (and on AArch64 with a different testcase),
the branch folder turns the branch to the landing pad into a fallthrough.
The MachineVerifier, which relies on AnalyzeBranch, is unable to check
the condition, and doesn't complain. However, it does in this specific
testcase, where the branch to the landing pad remained.
Make the MachineVerifier accept it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223059 91177308-0d34-0410-b5e6-96231b3b80d8
The AAPCS treats small structs and homogeneous floating (or vector) aggregates
specially, and guarantees they either get passed as a contiguous block of
registers, or prevent any future use of those registers and get passed on the
stack.
This concept can fit quite neatly into LLVM's own type system, mapping an HFA
to [N x float] and so on, and small structs to [N x i64]. Doing so allows
front-ends to emit AAPCS compliant code without having to duplicate the
register counting logic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222903 91177308-0d34-0410-b5e6-96231b3b80d8
This mostly entails adding relocations, however there are a couple of
changes to existing relocations:
1. R_AARCH64_NONE is defined to be zero rather than 256
R_AARCH64_NONE has been defined to be zero for a long time elsewhere
e.g. binutils and glibc since the submission of the AArch64 port in
2012 so this is required for compatibility.
2. R_AARCH64_TLSDESC_ADR_PAGE renamed to R_AARCH64_TLSDESC_ADR_PAGE21
I don't think there is any way for relocation names to leak out of LLVM
so this should not break anything.
Tested with check-all with no regressions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222821 91177308-0d34-0410-b5e6-96231b3b80d8