Loop splitting is better handled by the more generic global region splitting
based on the edge bundle graph.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125243 91177308-0d34-0410-b5e6-96231b3b80d8
If a live range is used by a terminator instruction, and that live range needs
to leave the block on the stack or in a different register, it can be necessary
to have both sides of the split live at the terminator instruction.
Example:
%vreg2 = COPY %vreg1
JMP %vreg1
Becomes after spilling %vreg2:
SPILL %vreg1
JMP %vreg1
The spill doesn't kill the register as is normally the case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125102 91177308-0d34-0410-b5e6-96231b3b80d8
A live range cannot be split everywhere in a basic block. A split must go before
the first terminator, and if the variable is live into a landing pad, the split
must happen before the call that can throw.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124894 91177308-0d34-0410-b5e6-96231b3b80d8
If the found value is not live-through the block, we should only add liveness up
to the requested slot index. When the value is live-through, the whole block
should be colored.
Bug found by SSA verification in the machine code verifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124812 91177308-0d34-0410-b5e6-96231b3b80d8
These end points come from the inserted copies, and can be passed directly to
useIntv. This simplifies the coloring code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124799 91177308-0d34-0410-b5e6-96231b3b80d8
The greedy register allocator revealed some problems with the value mapping in
SplitKit. We would sometimes start mapping values before all defs were known,
and that could change a value from a simple 1-1 mapping to a multi-def mapping
that requires ssa update.
The new approach collects all defs and register assignments first without
filling in any live intervals. Only when finish() is called, do we compute
liveness and mapped values. At this time we know with certainty which values map
to multiple values in a split range.
This also has the advantage that we can compute live ranges based on the
remaining uses after rematerializing at split points.
The current implementation has many opportunities for compile time optimization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124765 91177308-0d34-0410-b5e6-96231b3b80d8
Region splitting includes loop splitting as a subset, and it is more generic.
The splitting heuristics for variables that are live in more than one block are
now:
1. Try to create a region that covers multiple basic blocks.
2. Try to create a new live range for each block with multiple uses.
3. Spill.
Steps 2 and 3 are similar to what the standard spiller is doing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123853 91177308-0d34-0410-b5e6-96231b3b80d8
Analyze the live range's behavior entering and leaving basic blocks. Compute an
interference pattern for each allocation candidate, and use SpillPlacement to
find an optimal region where that register can be live.
This code is still not enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123774 91177308-0d34-0410-b5e6-96231b3b80d8
The analysis will be needed by both the greedy register allocator and the
X86FloatingPoint pass. It only needs to be computed once when the CFG doesn't
change.
This pass is very fast, usually showing up as 0.0% wall time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122832 91177308-0d34-0410-b5e6-96231b3b80d8
Edge bundles is an annotation on the CFG that turns it into a bipartite directed
graph where each basic block is connected to an outgoing and an ingoing bundle.
These bundles are useful for identifying regions of the CFG for live range
splitting.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122301 91177308-0d34-0410-b5e6-96231b3b80d8
the loop predecessors.
The register can be live-out from a predecessor without being live-in to the
loop header if there is a critical edge from the predecessor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122123 91177308-0d34-0410-b5e6-96231b3b80d8
Bypass loops have the current live range live through, but contain no uses or
defs. Splitting around a bypass loop can free registers for other uses inside
the loop by spilling the split range.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121871 91177308-0d34-0410-b5e6-96231b3b80d8
Whenever splitting wants to insert a copy, it checks if the value can be
rematerialized cheaply instead.
Missing features:
- Delete instructions when all uses have been rematerialized.
- Truncate live ranges to the remaining uses after rematerialization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118702 91177308-0d34-0410-b5e6-96231b3b80d8
source, and let rewrite() clean it up.
This way, kill flags on the inserted copies are fixed as well during rewrite().
We can't just assume that all the copies we insert are going to be kills since
critical edges into loop headers sometimes require both source and dest to be
live out of a block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117980 91177308-0d34-0410-b5e6-96231b3b80d8
in SSAUpdaterImpl.h
Verifying live intervals revealed that the old method was completely wrong, and
we need an iterative approach to calculating PHI placemant. Fortunately, we have
MachineDominators available, so we don't have to compute that over and over
like SSAUpdaterImpl.h must.
Live-out values are cached between calls to mapValue() and computed in a greedy
way, so most calls will be working with very small block sets.
Thanks to Bob for explaining how this should work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117599 91177308-0d34-0410-b5e6-96231b3b80d8
proper SSA updating.
This doesn't cause MachineDominators to be recomputed since we are already
requiring MachineLoopInfo which uses dominators as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117598 91177308-0d34-0410-b5e6-96231b3b80d8
Critical edges going into a loop are not as bad as critical exits. We can handle
them by splitting the critical edge, or by having both inside and outside
registers live out of the predecessor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117423 91177308-0d34-0410-b5e6-96231b3b80d8
the remainder register.
Example:
bb0:
x = 1
bb1:
use(x)
...
x = 2
jump bb1
When x is isolated in bb1, the inner part breaks into two components, x1 and x2:
bb0:
x0 = 1
bb1:
x1 = x0
use(x1)
...
x2 = 2
x0 = x2
jump bb1
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117408 91177308-0d34-0410-b5e6-96231b3b80d8
When a block has exactly two uses and the register is both live-in and live-out,
don't isolate the block. We would be inserting two copies, so we haven't really
made any progress.
If the live-in and live-out values separate into disconnected components after
splitting, we would be making progress. We can't detect that for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117169 91177308-0d34-0410-b5e6-96231b3b80d8
An exit block with a critical edge must only have predecessors in the loop, or
just before the loop. This guarantees that the inserted copies in the loop
predecessors dominate the exit block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117144 91177308-0d34-0410-b5e6-96231b3b80d8
All registers created during splitting or spilling are assigned to the same
stack slot as the parent register.
When splitting or rematting, we may not spill at all. In that case the stack
slot is still assigned, but it will be dead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116546 91177308-0d34-0410-b5e6-96231b3b80d8
splitting or spillling, and to help with rematerialization.
Use LiveRangeEdit in InlineSpiller and SplitKit. This will eventually make it
possible to share remat code between InlineSpiller and SplitKit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116543 91177308-0d34-0410-b5e6-96231b3b80d8
Before we would also split around a loop if any peripheral block had multiple
uses. This could cause repeated splitting when splitting a different live range
would insert uses into the periphery.
Now -spiller=inline passes the nightly test suite again.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116494 91177308-0d34-0410-b5e6-96231b3b80d8