based on ScalarEvolution without changing the induction variable phis.
This utility is the main tool of IndVarSimplifyPass, but the pass also
restructures induction variables in strange ways that are sensitive to
pass ordering. This provides a way for other loop passes to simplify
new uses of induction variables created during transformation. The
utility may be used by any pass that preserves ScalarEvolution. Soon
LoopUnroll will use it.
The net effect in this checkin is to cleanup the IndVarSimplify pass
by factoring out the SimplifyIndVar algorithm into a standalone utility.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137197 91177308-0d34-0410-b5e6-96231b3b80d8
These are not individual bug fixes. I had to rewrite a good chunk of
the unroller to make it sane. I think it was getting lucky on trivial
completely unrolled loops with no early exits. I included some fairly
simple unit tests for partial unrolling. I didn't do much stress
testing, so it may not be perfect, but should be usable now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137190 91177308-0d34-0410-b5e6-96231b3b80d8
On Cortex-A8, we use the NEON v2f32 instructions for f32 arithmetic. For
better latency, we also send D-register copies down the NEON pipeline by
translating them to vorr instructions.
This patch promotes even S-register copies to D-register copies when
possible so they can also go down the NEON pipeline. Example:
vldr.32 s0, LCPI0_0
loop:
vorr d1, d0, d0
loop2:
...
vadd.f32 d1, d1, d16
The vorr instruction looked like this after regalloc:
%S2<def> = COPY %S0, %D1<imp-def>
Copies involving odd S-registers, and copies that don't define the full
D-register are left alone.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137182 91177308-0d34-0410-b5e6-96231b3b80d8
Frontends(eg. clang) might pass incomplete form of IR, to step off the way beyond iterator end. In the case I had met, it took infinite loop due to meeting bogus PHInode.
Thanks to Jay Foad and John McCall.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137175 91177308-0d34-0410-b5e6-96231b3b80d8
Assigned symbol addresses get truncated to 32-bits, even on 64-bit platforms.
That's obviously bogus.
For example,
.globl _foo
.equ _foo, 0x987654321ULL
rdar://9922863
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137158 91177308-0d34-0410-b5e6-96231b3b80d8
This new disassembler can correctly decode all the testcases that the old one did, though
some "expected failure" testcases are XFAIL'd for now because it is not (yet) as strict in
operand checking as the old one was.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137144 91177308-0d34-0410-b5e6-96231b3b80d8
Coalescing can remove copy-like instructions with sub-register operands
that constrained the register class. Examples are:
x86: GR32_ABCD:sub_8bit_hi -> GR32
arm: DPR_VFP2:ssub0 -> DPR
Recompute the register class of any virtual registers that are used by
less instructions after coalescing.
This affects code generation for the Cortex-A8 where we use NEON
instructions for f32 operations, c.f. fp_convert.ll:
vadd.f32 d16, d1, d0
vcvt.s32.f32 d0, d16
The register allocator is now free to use d16 for the temporary, and
that comes first in the allocation order because it doesn't interfere
with any s-registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137133 91177308-0d34-0410-b5e6-96231b3b80d8
This function doesn't have anything to do with spill weights, and MRI
already has functions for manipulating the register class of a virtual
register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137123 91177308-0d34-0410-b5e6-96231b3b80d8
When this variable is set, "uname -r" will return its value instead of the
real OS version. Make this affect LLVM's triple for consistency.
<rdar://problem/9919167>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137111 91177308-0d34-0410-b5e6-96231b3b80d8