There are two ways one could implement hiding of linkonce_odr symbols in LTO:
* LLVM tells the linker which symbols can be hidden if not used from native
files.
* The linker tells LLVM which symbols are not used from other object files,
but will be put in the dso symbol table if present.
GOLD's API is the second option. It was implemented almost 1:1 in llvm by
passing the list down to internalize.
LLVM already had partial support for the first option. It is also very similar
to how ld64 handles hiding these symbols when *not* doing LTO.
This patch then
* removes the APIs for the DSO list.
* marks LTO_SYMBOL_SCOPE_DEFAULT_CAN_BE_HIDDEN all linkonce_odr unnamed_addr
global values and other linkonce_odr whose address is not used.
* makes the gold plugin responsible for handling the API mismatch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193800 91177308-0d34-0410-b5e6-96231b3b80d8
Major steps include:
1). introduces a not-addr-taken bit-field in GlobalVariable
2). GlobalOpt pass sets "not-address-taken" if it proves a global varirable
dosen't have its address taken.
3). AA use this info for disambiguation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193251 91177308-0d34-0410-b5e6-96231b3b80d8
When a linkonce_odr value that is on the dso list is not unnamed_addr
we can still look to see if anything is actually using its address. If
not, it is safe to hide it.
This patch implements that by moving GlobalStatus to Transforms/Utils
and using it in Internalize.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193090 91177308-0d34-0410-b5e6-96231b3b80d8
If a function seen at compile time is not necessarily the one linked to
the binary being built, it is illegal to change the actual arguments
passing to it.
e.g.
--------------------------
void foo(int lol) {
// foo() has linkage satisifying isWeakForLinker()
// "lol" is not used at all.
}
void bar(int lo2) {
// xform to foo(undef) is illegal, as compiler dose not know which
// instance of foo() will be linked to the the binary being built.
foo(lol2);
}
-----------------------------
Such functions can be captured by isWeakForLinker(). NOTE that
mayBeOverridden() is insufficient for this purpose as it dosen't include
linkage types like AvailableExternallyLinkage and LinkOnceODRLinkage.
Take link_odr* as an example, it indicates a set of *EQUIVALENT* globals
that can be merged at link-time. However, the semantic of
*EQUIVALENT*-functions includes parameters. Changing parameters breaks
the assumption.
Thank John McCall for help, especially for the explanation of subtle
difference between linkage types.
rdar://11546243
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192302 91177308-0d34-0410-b5e6-96231b3b80d8
Generalize the API so we can distinguish symbols that are needed just for a DSO
symbol table from those that are used from some native .o.
The symbols that are only wanted for the dso symbol table can be dropped if
llvm can prove every other dso has a copy (linkonce_odr) and the address is not
important (unnamed_addr).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191922 91177308-0d34-0410-b5e6-96231b3b80d8
This makes using array_pod_sort significantly safer. The implementation relies
on function pointer casting but that should be safe as we're dealing with void*
here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191175 91177308-0d34-0410-b5e6-96231b3b80d8
LLVM IR doesn't currently allow atomic bool load/store operations, and the
transformation is dubious anyway because it isn't profitable on all platforms.
PR17163.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190357 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r189886.
I found a corner case where this optimization is not valid:
Say we have a "linkonce_odr unnamed_addr" in two translation units:
* In TU 1 this optimization kicks in and makes it hidden.
* In TU 2 it gets const merged with a constant that is *not* unnamed_addr,
resulting in a non unnamed_addr constant with default visibility.
* The static linker rules for combining visibility them produce a hidden
symbol, which is incorrect from the point of view of the non unnamed_addr
constant.
The one place we can do this is when we know that the symbol is not used from
another TU in the same shared object, i.e., during LTO. I will move it there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189954 91177308-0d34-0410-b5e6-96231b3b80d8
Original message:
If a constant or a function has linkonce_odr linkage and unnamed_addr, mark
hidden. Being linkonce_odr guarantees that it is available in every dso that
needs it. Being a constant/function with unnamed_addr guarantees that the
copies don't have to be merged.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189886 91177308-0d34-0410-b5e6-96231b3b80d8
This patch changes the default setting for the LateVectorization flag that controls where the loop-vectorizer is ran.
Perf gains:
SingleSource/Benchmarks/Shootout/matrix -37.33%
MultiSource/Benchmarks/PAQ8p/paq8p -22.83%
SingleSource/Benchmarks/Linpack/linpack-pc -16.22%
SingleSource/Benchmarks/Shootout-C++/ary3 -15.16%
MultiSource/Benchmarks/TSVC/NodeSplitting-flt/NodeSplitting-flt -10.34%
MultiSource/Benchmarks/TSVC/NodeSplitting-dbl/NodeSplitting-dbl -7.12%
Regressions:
SingleSource/Benchmarks/Misc/lowercase 15.10%
MultiSource/Benchmarks/TSVC/Equivalencing-flt/Equivalencing-flt 13.18%
SingleSource/Benchmarks/Shootout-C++/matrix 8.27%
SingleSource/Benchmarks/CoyoteBench/lpbench 7.30%
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189858 91177308-0d34-0410-b5e6-96231b3b80d8
1. They are a kind of cannonicalization.
2. The performance measurements show that it is better to keep them in.
There should be no functional change if you are not enabling the LateVectorization mode.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189539 91177308-0d34-0410-b5e6-96231b3b80d8
When unrolling is disabled in the pass manager, the loop vectorizer should also
not unroll loops. This will allow the -fno-unroll-loops option in Clang to
behave as expected (even for vectorizable loops). The loop vectorizer's
-force-vector-unroll option will (continue to) override the pass-manager
setting (including -force-vector-unroll=0 to force use of the internal
auto-selection logic).
In order to test this, I added a flag to opt (-disable-loop-unrolling) to force
disable unrolling through opt (the analog of -fno-unroll-loops in Clang). Also,
this fixes a small bug in opt where the loop vectorizer was enabled only after
the pass manager populated the queue of passes (the global_alias.ll test needed
a slight update to the RUN line as a result of this fix).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189499 91177308-0d34-0410-b5e6-96231b3b80d8
The current version of StripDeadDebugInfo became stale and no longer actually
worked since it was expecting an older version of debug info.
This patch updates it to use DebugInfoFinder and the modern DebugInfo classes as
much as possible to make it more redundent to such changes. Additionally, the
only place where that was avoided (the code where we replace the old sets with
the new), I call verify on the DIContextUnit implying that if the format changes
and my live set changes no longer make sense an assert will be hit. In order to
ensure that that occurs I have included a test case.
The actual stripping of the dead debug info follows the same strategy as was
used before in this class: find the live set and replace the old set in the
given compile unit (which may contain dead global variables/functions) with the
new live one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189078 91177308-0d34-0410-b5e6-96231b3b80d8
Merge consecutive if-regions if they contain identical statements.
Both transformations reduce number of branches. The transformation
is guarded by a target-hook, and is currently enabled only for +R600,
but the correctness has been tested on X86 target using a variety of
CPU benchmarks.
Patch by: Mei Ye
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187278 91177308-0d34-0410-b5e6-96231b3b80d8
The language reference says that:
"If a symbol appears in the @llvm.used list, then the compiler,
assembler, and linker are required to treat the symbol as if there is
a reference to the symbol that it cannot see"
Since even the linker cannot see the reference, we must assume that
the reference can be using the symbol table. For example, a user can add
__attribute__((used)) to a debug helper function like dump and use it from
a debugger.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187103 91177308-0d34-0410-b5e6-96231b3b80d8