The metadata/value split introduced a major regression reading large
bitcode files that contain debug info (or other cyclic (non-self
reference) metadata graphs). For the first time in a while, I dropped
from libLTO.dylib down to `llvm-lto` with a non-trivial bitcode file
(~350MB), and I hit this when reading the result of ld64's `-save-temps`
in `llvm-lto`.
Here's pseudo-code for what was going on:
read-main-metadata-block:
for each md:
if has-fwd-ref: // Only true for cyclic graphs.
any-fwd-refs <- true
if any-fwd-refs:
foreach md:
resolve-cycles(md) // Handle cycles.
foreach function:
read-function-metadata-block: // Such as !alias, !loop
if any-fwd-refs:
foreach md: // (all metadata, not just this block)
resolve-cycles(md) // A no-op, but the loop is expensive!!
This commit resets the `AnyFwdRefs` flag to `false`. This on its own
was enough to change my Release+Asserts `llvm-lto` time for reading this
bitcode from over 20 minutes (I gave up on it) to 20 seconds. I've gone
further by tracking the min/max metadata forward-references in a
metadata block. This protects against a schema that has lots of
functions that each reference their own metadata cycle.
Unfortunately, this regression is in the 3.6 branch as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229421 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a safe interface to the machine independent InputArg struct
for accessing the index of the original (IR-level) argument. When a
non-native return type is lowered, we generate the hidden
machine-level sret argument on-the-fly. Before this fix, we were
representing this argument as OrigArgIndex == 0, which is an outright
lie. In particular this crashed in the AArch64 backend where we
actually try to access the type of the original argument.
Now we use a sentinel value for machine arguments that have no
original argument index. AArch64, ARM, Mips, and PPC now check for this
case before accessing the original argument.
Fixes <rdar://19792160> Null pointer assertion in AArch64TargetLowering
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229413 91177308-0d34-0410-b5e6-96231b3b80d8
To be consistent with what clang-format does, don't add extra indentation
inside an anonymous namespace. NFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229412 91177308-0d34-0410-b5e6-96231b3b80d8
We won't find a root with index zero in any loop that we are able to reroll.
However, we may find one in a non-rerollable loop, so bail gracefully instead
of failing hard.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229406 91177308-0d34-0410-b5e6-96231b3b80d8
If a PHI has no users, don't crash; bail gracefully. This shouldn't
happen often, but we can make no guarantees that previous passes didn't leave
dead code around.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229405 91177308-0d34-0410-b5e6-96231b3b80d8
Remember if the node ever was in this state instead of checking just the
final state.
Reviewed by Arnaud de Grandmaison.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229400 91177308-0d34-0410-b5e6-96231b3b80d8
to generically lower blends and is particularly nice because it is
available frome SSE2 onward. This removes a lot of the remaining domain
crossing blends in SSE2 code.
I'm hoping to replace some of the "interleaved" lowering hacks with
something closer to this which should be more principled. First, this
needs to learn how to detect and use other interleavings besides that of
the natural type provided. That will be a follow-up patch though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229378 91177308-0d34-0410-b5e6-96231b3b80d8
For #pragma comment(linker, ...) MSVC expects the comment string to be quoted, but for #pragma comment(lib, ...) the compiler itself quotes the library name.
Since this distinction disappears by the time the directive reaches the backend, move quoting for the "lib" version to the frontend.
Differential Revision: http://reviews.llvm.org/D7652
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229375 91177308-0d34-0410-b5e6-96231b3b80d8
This blend instruction is ... really lame. The register usage is insane.
As a consequence this is probably only *barely* better than 2 pshufbs
followed by a por, and that mostly because it only has to read from
a single memory location.
However, this doesn't fix as much as I kind of expected, so more to go.
Pretty sure that the ordering and delegation of v16i8 is just really,
really bad.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229373 91177308-0d34-0410-b5e6-96231b3b80d8
template now that we can use them.
This is, of course, horribly ugly because of the required recursive
formulation. Suggestions for making it less ugly welcome.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229367 91177308-0d34-0410-b5e6-96231b3b80d8
classes. We can't use template aliases because on MSVC they don't appear
to work correctly in the common usage such as Format.h.
Many thanks to Zach for doing all the testing and debugging here. I just
slotted the fix into the code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229362 91177308-0d34-0410-b5e6-96231b3b80d8
We didn't properly handle the out-of-bounds case for
ConstantAggregateZero and UndefValue. This would manifest as a crash
when the constant folder was asked to fold a load of a constant global
whose struct type has no operands.
This fixes PR22595.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229352 91177308-0d34-0410-b5e6-96231b3b80d8
advantage of the existence of a reasonable blend instruction.
The 256-bit vector shuffle lowering has leveraged the general technique
of decomposed shuffles and blends for quite some time, but this never
made it back into the 128-bit code, and there are a large number of
patterns where this is substantially better. For example, this removes
almost all domain crossing in vector shuffles that involve some blend
and some permutation with SSE4.1 and later. See the massive reduction
in 'shufps' for integer test cases in this commit.
This isn't perfect yet for a few reasons:
1) The v8i16 shuffle lowering continues to plague me. We don't always
form an unpack-based blend when that would be better. But the wins
pretty drastically outstrip the losses here.
2) The v16i8 shuffle lowering is just a disaster here. I never went and
implemented blend support here for some terrible reason. I'll do
that next probably. I've not updated it for now.
More variations on this technique are coming as well -- we don't
shuffle-into-unpack or shuffle-into-palignr, both of which would also be
profitable.
Note that some test cases grow significantly in the number of
instructions, but I expect to actually be faster. We use
pshufd+pshufd+blendw instead of a single shufps, but the pshufd's are
very likely to pipeline well (two ports on most modern intel chips) and
the blend is a *very* fast instruction. The domain switch penalty will
essentially always be more than a blend instruction, which is the only
increase in tree height.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229350 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When creating {insert,extract}value instructions from a BitcodeReader, we
weren't verifying the fields were valid.
Bugs found with afl-fuzz
Reviewers: rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7325
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229345 91177308-0d34-0410-b5e6-96231b3b80d8
Introduces a subset of C++14 integer sequences in STLExtras. This is
just enough to support unpacking a std::tuple into the arguments of
snprintf, we can add more of it when it's actually needed.
Also removes an ancient macro hack that leaks a macro into the global
namespace. Clean up users that made use of the convenient hack.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229337 91177308-0d34-0410-b5e6-96231b3b80d8
This change is a logical suspect in 22587 and 22590. Given it's of minimal importanance and I can't get clang to build on my home machine, I'm reverting so that I can deal with this next week.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229322 91177308-0d34-0410-b5e6-96231b3b80d8