The meaning of getTypeSize was not clear - clarifying it is important
now that we have x86 long double and arbitrary precision integers.
The issue with long double is that it requires 80 bits, and this is
not a multiple of its alignment. This gives a primitive type for
which getTypeSize differed from getABITypeSize. For arbitrary precision
integers it is even worse: there is the minimum number of bits needed to
hold the type (eg: 36 for an i36), the maximum number of bits that will
be overwriten when storing the type (40 bits for i36) and the ABI size
(i.e. the storage size rounded up to a multiple of the alignment; 64 bits
for i36).
This patch removes getTypeSize (not really - it is still there but
deprecated to allow for a gradual transition). Instead there is:
(1) getTypeSizeInBits - a number of bits that suffices to hold all
values of the type. For a primitive type, this is the minimum number
of bits. For an i36 this is 36 bits. For x86 long double it is 80.
This corresponds to gcc's TYPE_PRECISION.
(2) getTypeStoreSizeInBits - the maximum number of bits that is
written when storing the type (or read when reading it). For an
i36 this is 40 bits, for an x86 long double it is 80 bits. This
is the size alias analysis is interested in (getTypeStoreSize
returns the number of bytes). There doesn't seem to be anything
corresponding to this in gcc.
(3) getABITypeSizeInBits - this is getTypeStoreSizeInBits rounded
up to a multiple of the alignment. For an i36 this is 64, for an
x86 long double this is 96 or 128 depending on the OS. This is the
spacing between consecutive elements when you form an array out of
this type (getABITypeSize returns the number of bytes). This is
TYPE_SIZE in gcc.
Since successive elements in a SequentialType (arrays, pointers
and vectors) need to be aligned, the spacing between them will be
given by getABITypeSize. This means that the size of an array
is the length times the getABITypeSize. It also means that GEP
computations need to use getABITypeSize when computing offsets.
Furthermore, if an alloca allocates several elements at once then
these too need to be aligned, so the size of the alloca has to be
the number of elements multiplied by getABITypeSize. Logically
speaking this doesn't have to be the case when allocating just
one element, but it is simpler to also use getABITypeSize in this
case. So alloca's and mallocs should use getABITypeSize. Finally,
since gcc's only notion of size is that given by getABITypeSize, if
you want to output assembler etc the same as gcc then getABITypeSize
is the size you want.
Since a store will overwrite no more than getTypeStoreSize bytes,
and a read will read no more than that many bytes, this is the
notion of size appropriate for alias analysis calculations.
In this patch I have corrected all type size uses except some of
those in ScalarReplAggregates, lib/Codegen, lib/Target (the hard
cases). I will get around to auditing these too at some point,
but I could do with some help.
Finally, I made one change which I think wise but others might
consider pointless and suboptimal: in an unpacked struct the
amount of space allocated for a field is now given by the ABI
size rather than getTypeStoreSize. I did this because every
other place that reserves memory for a type (eg: alloca) now
uses getABITypeSize, and I didn't want to make an exception
for unpacked structs, i.e. I did it to make things more uniform.
This only effects structs containing long doubles and arbitrary
precision integers. If someone wants to pack these types more
tightly they can always use a packed struct.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43620 91177308-0d34-0410-b5e6-96231b3b80d8
doing something - this needs to work for release builds
too. I chose to just abort rather than following the
fancy logic of abortIfBroken, because (1) it is a pain
to do otherwise, and (2) nothing is going to work if the
module is this broken.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43611 91177308-0d34-0410-b5e6-96231b3b80d8
flag in the **key** of the backpatch map, as opposed to the mapped
value which contains either the final pointer, or a pointer to a chain
of pointers that need to be backpatched. The bit flag was moved to
the key because we were erroneously assuming that the backpatched
pointers would be at an alignment of >= 2 bytes, which obviously
doesn't work for character strings. Now we just steal the bit from the key.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43595 91177308-0d34-0410-b5e6-96231b3b80d8
Added method FindAndConstruct() to DenseMap, which does the same thing as
operator[], except that it refers value_type& (a reference to both the
key and mapped data pair). This method is useful for clients that wish
to access the stored key value, as opposed to the key used to do the
actual lookup (these need not always be the same).
Redefined operator[] to use FindAndConstruct() (same logic).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43594 91177308-0d34-0410-b5e6-96231b3b80d8
by r43510. Gracefully handle constants with vector type that aren't
ConstantVector or ConstantAggregateZero.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43579 91177308-0d34-0410-b5e6-96231b3b80d8
just like pointers, except that they cannot be backpatched. This
means that references are essentially non-owning pointers where the
referred object must be deserialized prior to the reference being
deserialized. Because of the nature of references, this ordering of
objects is always possible.
Fixed a bug in backpatching code (returning the backpatched pointer
would accidentally include a bit flag).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43570 91177308-0d34-0410-b5e6-96231b3b80d8
Now both subtarget define getMaxInlineSizeThreshold and the expansion uses it.
This should not change generated code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43552 91177308-0d34-0410-b5e6-96231b3b80d8
storing an i170 on a 32 bit machine. This is first
promoted to a trunc-i170 store of an i256. On a
little-endian machine this expands to a store of
an i128 and a trunc-i42 store of an i128. The
trunc-i42 store is further expanded to a trunc-i42
store of an i64, then to a store of an i32 and a
trunc-i10 store of an i32. At this point the operand
type is legal (i32) and expansion stops (legalization
of the trunc-i10 needs to be handled in LegalizeDAG.cpp).
On big-endian machines the high bits are stored first,
and some bit-fiddling is needed in order to generate
aligned stores.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43499 91177308-0d34-0410-b5e6-96231b3b80d8
offload to getStore rather than trying to handle
both cases at once (the assertions for example
assume the store really is truncating).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43498 91177308-0d34-0410-b5e6-96231b3b80d8